期刊文献+

基于混合模重构的kNN回归 被引量:3

KNN REGRESSION BASED ON MIXED-NORM RECONSTRUCTION
下载PDF
导出
摘要 对于线性回归中k NN(k-Nearest Neighbor)算法的k值固定问题和训练样本中的噪声问题,提出一种新的基于重构的稀疏编码方法。该方法用训练样本重构每一个测试样本,重构过程中,l_1-范数被用来确保每个测试样本被不同数目的训练样本来预测,以此解决kNN算法固定k值问题;l_(2,1)-范数导致的整行稀疏被用来去除噪声样本,以避免数据集上的噪声对重构产生不利影响。实验在UCI数据集上显示:新的改进算法比原来的kNN算法在线性回归中具有更好的预测效果。 This paper proposes a new reconstruction-based sparse coding method for solv{ng the problem of k value fixing of k-NN in linear regression and the problem of noise in training samples. The method reconstructs every test sample using training sample. In reconstruction process,the 11 -norm is used to ensure each test sample will be predicted by training sample in different numbers and thus to solve the problem of k-NN algorithm in fixing k value, and the entire row sparse incurred by 12,1 -norm is used to remove noise samples so as to prevent the noise in dataset from adverse impact on the reconstruction. Experimental results on UCI datasets show that the new improved algorithm outperforms the previous k-NN regression method in terms of prediction effect.
出处 《计算机应用与软件》 CSCD 2016年第2期232-236,241,共6页 Computer Applications and Software
基金 国家自然科学基金项目(6117013161263035 61363009) 国家高技术研究发展计划项目(2012AA011005) 国家重点基础研究发展计划项目(2013CB329404) 广西自然科学基金项目(2012GXNSFGA06004) 广西研究生教育创新计划项目(YCSZ2015095 YCSZ2015096) 广西多源信息挖掘与安全重点实验室开放基金项目(MIMS13-08)
关键词 线性回归 稀疏编码 重构l1-范数l2 1-范数 噪声样本 Linear regression Sparse coding Reconstruction l1-norm l2,1-norm Noise sample
  • 相关文献

参考文献18

  • 1Qin Y S, Zhang S C, Zhang C Q. Combinining knn imputation and bootstrap calibreated:empirical likelihood for incomplete data analysis [ J]. International Journal of Data Warehousing and Mining, 2010,6 (4) :61 -73.
  • 2Cora G, Wojna A. A classifier combining rule induction and KNN method with automated selection of optimal neighbourhood [ C ]//Pr- oceedings of the 13rd European Conference on Machine Learning. Lon- donlUK: Spfinger-Verlag,2002:lll - 123.
  • 3Matthieu Kowalski. Sparse regression using mixed norms[ J]. Applied and Computational Harmonic Analysis, 2009,27 ( 3 ) : 303 - 324.
  • 4Hechenbiehler K, Schliep K. Weighted k-nearest-neighbor techniques and ordinal classification, Discussion Paper 399 [ R ]. Munich, Germ- any: Ludwing-Maximilians University Munich ,2004.
  • 5Wang T, Qin Z X,Zhang S C, et al. Cost-sensitive classification with inadequate labeled data [ J ]. Information Systems, 2012,37 ( 5 ) : 508 -516.
  • 6Zhang S C. Decision tree classifiers sensitive to heterogeneous costs [ J]. Journal of Systems and Software ,2012,85 (4) :771 - 779.
  • 7Zhang S C. Cost-sensitive classification with respect to waiting cost [ J ]. Knowledge-Based Systems,2010,23 (5) :369 - 378.
  • 8Zhu X, Zhang S, Zhang J, et al. Cost - sensitive imputing missing val- ues ordering[ J]. Aaai Press ,2007,2 : 1922 - 1923.
  • 9李长彬,黄东,黎永壹.局部线性重构分类算法研究[J].计算机应用与软件,2013,30(4):156-158. 被引量:1
  • 10Zhu X F, Huang Z, Cheng H, et al. Sparse hashing for fast multi-media search[J]. ACM Transactions on Information System,2013,31 (2) :9.

二级参考文献9

  • 1Cover T~ Hart P. Nearest neighbor pattern classification [ J ]. IEEE Transac- tions on Information Theory, 1967,IT-IS :21 - 27.
  • 2Chopra S, Hadsell R, Lecun Y. Learning a similiarty metric discrimina- tively, with application to face verification [ C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Di- ego, CA ,2005.
  • 3Domeniconi C ,Gunopulos D,Peng J. Large margin nearest neighbor ciassi- tiers[J]. IEEE Transactions on Neural Networks,2005,16(4) :899-909.
  • 4Goldberger J, Roweis S, Hinton G, et al. Neighborhood components a- nalysis [ C ]. Advances in Neural Information Processing Systems ,2005 : 513 -520.
  • 5Shalev-Shwartz S, Singer Y, Ng A Y. Online and batch learning of pseu- do-metrics[ C]//Proceedings of the International Conference on Ma- chine Learning,2004.
  • 6Shental N, Hertz T, Wwinshall D, et al. Adjustment learning and rele- vant component analysis[ C ]//Proceedings of the European Conference on Computer Vision ,2002,41776 - 792.
  • 7Kang P, Cho S. Locally linear reconstruction for instance-based learning [ J ]. Pattern Recognition ,2008,41 ( 11 ) :3507 - 3518.
  • 8Frank A,Asuncion A. UCI Machine learning Repository[ DB/OL]. Ir- vine, CA : University of California, School of Information and Computer Science,2010. http ://archive. ics. uci. edu/ml.
  • 9Saul L,Roweis S. Think globally,fit Locally: Unsupervised learning of low dimensional manifolds [ J ]. Journal of Machine Learning Research, 2003,4 : 119 - 155.

同被引文献8

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部