期刊文献+

多学习教与学优化算法 被引量:6

TEACHING-LEARNING-BASED OPTIMISATION ALGORITHM WITH MULTI-LEARNING STRATEGY
下载PDF
导出
摘要 针对教与学优化算法(TLBO)局部开发能力差,易陷入局部最优的缺点,提出一种基于反向学习的多学习教与学优化算法(MTLBO)。通过反向学习技术拓展搜索空间,增加解的多样性,进一步增强算法的全局搜索能力。引入多学习机制,使其更有效地进行局部搜索,加快收敛速度。同时提出一种小概率变异策略,增加跳出局部最优的可能性。在基准测试函数上进行验证实验,结果表明,与TLBO算法、ITLBO算法以及其他优化算法相比,该算法在低维和高维函数上都取得了较好的优化效果。 We proposed a teaching-learning-based optimisation algorithm (TLBO) with multi-learning mechanism ( MTLBO), which is based on the opposition-based learning, aimed at the drawbacks of basic TLBO in poor local development ability and solutions being prone to falling into local optima. It broadens the search space through opposition-based learning technology to increase the diversity of solutions and further improve the global search ability of the algorithm. The introduction of multi-learning mechanism makes the local search more effective i and speeds up the convergence rate. Meanwhile we presented a small probability mutation strategy to increase the likelihood of solutions jumping out of local optima. Verification experiments were carried out on benchmark test functions, results indicated that compared with basic TLBO, ITLBO and other optimised algorithms, the proposed MTLBO algorithm achieved better optimisation effect on both low and high dimensional functions.
出处 《计算机应用与软件》 CSCD 2016年第2期246-249,298,共5页 Computer Applications and Software
基金 新疆"十二五"制造业信息化科技示范工程项目(201130110)
关键词 教与学优化算法 反向学习技术 多学习机制 变异策略 Teaching-learning-based optimisation algorithm Opposition-based learning technology Multi-learning mechanism Mutation strategy
  • 相关文献

参考文献16

  • 1Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimi- zation: a novel method for constrained mechanical design optimization problems[ J]. Computer-Aided Design,2011,43(3) :303 -315.
  • 2Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimi- zation: An optimization method for continuous non-linear large scale problems [ J]. Information Sciences ,2012,183 ( 1 ) : 1 - 15.
  • 3Togan V. Design of planar steel frames using teaching-learning based optimization [ J ]. Engineering Structures,2012,34 ( 1 ) :225 - 232.
  • 4Wu Wei, Hu Jingtao, Zhang Jilong. Prognostics of machine health con- dition using an improved ARIMA-based prediction method[ C]. Proe of the 2nd IEEE Conference on Industrial Electronics and Applications, 2007 : 1062 - 1067.
  • 5Rao R V, Patel V. Multi-objective optimization of heat exchangers using a modified Teaching-learning-based optimization algorithm[ J]. Applied Mathematical Modeling,2013,37 ( 3 ) : 1147 - 1162.
  • 6Rao R V, Patel V. Multi-objective optimization of two stage thermoelec- tric coolers using a modified teaching-learning-based optimization algo- rithm [ J ]. Engineering Applications of Artificial Intelligence,2013,26 ( 1 ) :430 - 445.
  • 7Rao R V, Patel V. An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems [ J ]. Scientia Iranica,2013,20(3) :710 -720.
  • 8Rao R V, Patel V. An elitist teaching-learning-based optimization aigo- rithm for solving complex constrained optimization problems[ J]. Inter- national Journal of Industrial Engineering Computations, 2012,3 ( 4 ) : 535 - 560.
  • 9Tizhoosh R. Opposition-based learning:a new scheme for machine intel- ligence [ C ]//Proceeding of International Conference on Computational Intelligence Modeling Control and Automation, Vienna, 2005:695 - 701.
  • 10Rahnamayan S, Tizhcesh H R, Salama M M A. Quasi-oppositional dif- ferential evolution[ C ]//Proceeding of the IEEE congress on evolution- ary computation ,2007:29 - 36.

二级参考文献16

  • 1Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search [ J ]. Simulation,2001,76 (2) :60-68.
  • 2Mahdavi M, Fesanghary M, Damangir E. An improve harmony search algorithm for solving optimization problems [J]. Applied Mathematics and Computation,2007,188(2 ) : 1567-1579.
  • 3Saka M P. Optimum design of steel sway frames to BS5950 using harmony search algorithm [J]. Constructional Steel Research, 2009,65(1) : 36-43.
  • 4Ayvaz M T. Application of harmony search algorithm to the solution of groundwater management models [J].Advances in Water Re- sources,2009,32(6) :916-924.
  • 5Kim J H, Geem Z W, Kim E S. Parameter estimation of the nonlin- ear Muskingum model using harmony search[J].Journal of Amer- ican Water Resource Association ,2001,37 (5) : 1131-1138.
  • 6Sharma K D, Chatterjee A, Rakshit A. Design of a hybrid stable a- daptive fuzzy controller employing lyapunov theory and harmony search algorithm [ J]. IEEE Transactions on Control Systems Tech- nology, 2010,18 (6) : 1440-1447.
  • 7Omran M G H, Mahdavi M. Global-best harmony search [ J ]. Ap- plied Mathematics and Computation, 2008,198 ( 2 ) :643 -656.
  • 8Pan Q K,Suganthan P N,Tasgetiren M F,et al. A self-adaptive global best harmony search algorithm for continuous optimization problems [J]. Applied Mathematics and Computation,2010,216(3) :830-848.
  • 9Wang C M, Huang Y F. Serf-adaptive harmony search algorithm for optimization [J]. Expert System. Applied mathematics and com- putation,2010,37 (4) :2826-2837.
  • 10Jing Chen, Quan Ice Pan, Jun qing Li. Harmony search algorithm with dynamic control parameters [J].Applied Mathematics and Computation ,2012,219 (2) :592-604.

共引文献1

同被引文献36

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部