期刊文献+

基于SVR的智能建筑火灾预警模型设计 被引量:6

The Intelligent Building Fire Pre-Warning Model Design Based on SVR
原文传递
导出
摘要 火灾信息处理算法的有效性直接决定着建筑火灾自动预警系统的可靠性,开发新型智能火灾预警算法是目前建筑火灾探测预警领域研究的热点之一.针对现有火灾预警算法的不足,研究设计提出一种基于支持向量回归机(SVR)的智能建筑火灾预警算法.为了验证该算法在多传感器复合式建筑火灾预警系统信息处理中的可靠性与优越性,以普通火灾和欧洲试验火历史数据为例,通过Matlab模拟仿真,进行实证分析,并将预警结果与BP神经网络预警结果进行对比分析.研究成果可为新型建筑火灾自动预警系统的设计提供科学的依据. The effectiveness of the fire information processing algorithm directly determines the reliability of the building auto-fire warning system, so developing new fire pre-warning algorithm is one of the hotspot in the field of building fire detection and pre-warning research. Aiming at the deficiencies of the existing fire warning algorithm, an intelligent building fire warning algorithm based on the support vector regression machine (SVR) is designed and proposed in the study. In order to verify the information processing reliability and superiority of the algorithm in the composite building fire pre-warning system, with the ordinary fire history data and the European standard test fire history data as example, to make empirical analysis through Matlab simulation, and the pre-warning results were compared with the BP neural network pre-warning results. The research results can provide a scientific basis for the design of new building auto-fire pre-warning system.
出处 《数学的实践与认识》 北大核心 2016年第1期187-196,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(51178185) 中央高校科研基本业务费 华北科技学院基金项目(3142014043)
关键词 建筑火灾预警算法 支持向量回归机模型 MATLAB仿真 实证分析 building fire pre-warning algorithm support vector regression machine model matlab simulation empirical analysis
  • 相关文献

参考文献4

二级参考文献17

  • 1王芳,张敏,赵贵昉.复合式智能火灾探测器设计[J].航空精密制造技术,2003,39(6):41-43. 被引量:7
  • 2翟永杰,尚雪莲,韩璞,王东风.SVR在传感器故障诊断中的仿真研究[J].系统仿真学报,2004,16(6):1257-1259. 被引量:24
  • 3NAKANISHI S. Intelligent fire warning system using fuzzy technology[J]. Fire Safety Journal, 1991, 17 (3) : 531- 533.
  • 4WALTZ E, LINAS J. Multisensor data fusion [ M ]. Boston: Artech House, 1990: 87-106.
  • 5OKAYAMA Y. A primitive study of a fire detection method controlled by artificial neural net [ J ]. Fire Safety Journal, 1991, 17(6) : 535-553.
  • 6Ahlers H.多传感器技术及其应用[M].王磊,马常霞,周庆,译.北京:国防工业出版社,2001.207.
  • 7Vapnik V.The nature of statistical learning theory [M]. Springer-Verlag ,New-York 1995.
  • 8Vapnik V, Statistical learning Theory [M]. John Wiley, 1998.
  • 9邓乃扬,田英杰.支持向最机--理论、算法与拓展[M].北京:北京科技出版社,2009.
  • 10王殊;窦征.火灾探测及其信号处理[M]武汉:华中理工大学出版社,1999.

共引文献17

同被引文献26

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部