摘要
针对目前泡沫油渗流数学模型存在的问题,借鉴拟泡点模型和过饱和模型中拟泡点压力及弛豫时间的概念,通过对3组长岩心衰竭实验进行分析,建立了泡沫油渗流数学模型。模型中将泡沫油视为拟单相流,通过实验分析在泡沫油流动过程中流动介质的有效渗透率与降压速度、原油粘度和含气饱和度的变化规律,提出有效渗透率的数学表达式;认为泡沫油的粘度与相同条件下饱和油的粘度近似相等;将泡沫油的压缩系数视为油相与气相压缩系数的线性组合;同时在模型建立过程中考虑了泡沫油的过饱和现象。为了验证所建模型的正确性,分别将泡沫油渗流数学模型、拟泡点模型、过饱和模型及黑油模型计算结果与实验结果进行对比,结果表明泡沫油渗流数学模型与实验结果吻合程度较好,而其他模型计算偏差较大。
Aiming at the disadvantages of mathematical models for foamy-oil flow at present,the concepts of pseudo-bubble-point pressure and relaxation time in pseudo-bubble-point model and supersaturation model were introduced,and three depletion experiments of long cores were conducted. On this basis,a new mathematical model for foamy-oil flow was established. In this model,foamy oil is viewed as pseudo-single-phase flow,and the effective permeability of porous media varies with pressure depletion rate,oil viscosity and gas saturation,and thus an mathematical expression of effective permeability was put forward by analysis of the experimental data. The viscosity of foamy oil is approximately equal to that of saturated oil under the same conditions. The compression factor of foamy oil is treated as a linear combination of the compression factors of oil and gas phase. During foamy oil flows,the supersaturation in the depletion process has been considered as well. In order to verify the correctness of the model,results from the proposed model,the pseudo-bubble-point model,the supersaturation model and the black oil model were compared with the experimental data respectively. It shows that the new model fits the experimental data well,however,the other three models' calculations deviation is large.
出处
《油气地质与采收率》
CAS
CSCD
北大核心
2016年第2期108-114,共7页
Petroleum Geology and Recovery Efficiency
基金
国家科技重大专项"稠油
碳酸盐岩和致密油藏开发主体技术与应用潜力"(2016ZX05016-006)和"超高压有水气藏动态变化规律研究"(2016ZX05015-002)
关键词
泡沫油
数学模型
衰竭实验
拟单相流
有效渗透率
热力学不平衡
foamy oil
mathematical model
depletion experiment
pseudo-single-phase flow
effective permeability
nonthermodynamic equilibrium