摘要
Composting is attractive and inexpensive method for treatment and biomass disposal of water hyacinth. However, the major disadvantage of water hyacinth composting is the high content of heavy metals in the final compost. Addition of lime sludge significantly reduced most bioavailable fractions (exchangeable and carbonate) of heavy metals. Studies were carried on composting of water hyacinth (Eichhornia crassipes) with cattle manure and sawdust (6:3:1 ratio) and effects of addition of lime (1%, 2% and 3%) on heavy metal speciation were evaluated during 30 days of composting period. The Tessier sequential extraction method was employed to investigate the changes in speciation of heavy metals such as Zinc (Zn), Copper (Cu), Manganese (Mn), Iron (Fe), Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr) during water hyacinth composting. Effects of physicochemical parameters such as temperature, pH and organic matter on speciation of heavy metals were also studied during the process. Results showed that, the total metal content was increased during the composting process. The higher reduction in bioavailability factor (BF) of Cu, Fe, Ni, Cd and Cr was observed in lime 2 treatment about 62.1%, 64.4%, 71.9%, 62.1% and 58.9% respectively; however higher reduction in BF of Zn and Pb was observed in lime 1 treatment during the composting process. Reducible and oxidizable fractions of Ni, Pb and Cd were not observed during the process. Addition of lime was very effective for reduction ofbioavailability of heavy metals during composting of water hyacinth with cattle manure and sawdust.
Composting is attractive and inexpensive method for treatment and biomass disposal of water hyacinth. However, the major disadvantage of water hyacinth composting is the high content of heavy metals in the final compost. Addition of lime sludge significantly reduced most bioavailable fractions (exchangeable and carbonate) of heavy metals. Studies were carried on composting of water hyacinth (Eichhornia crassipes) with cattle manure and sawdust (6:3:1 ratio) and effects of addition of lime (1%, 2% and 3%) on heavy metal speciation were evaluated during 30 days of composting period. The Tessier sequential extraction method was employed to investigate the changes in speciation of heavy metals such as Zinc (Zn), Copper (Cu), Manganese (Mn), Iron (Fe), Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr) during water hyacinth composting. Effects of physicochemical parameters such as temperature, pH and organic matter on speciation of heavy metals were also studied during the process. Results showed that, the total metal content was increased during the composting process. The higher reduction in bioavailability factor (BF) of Cu, Fe, Ni, Cd and Cr was observed in lime 2 treatment about 62.1%, 64.4%, 71.9%, 62.1% and 58.9% respectively; however higher reduction in BF of Zn and Pb was observed in lime 1 treatment during the composting process. Reducible and oxidizable fractions of Ni, Pb and Cd were not observed during the process. Addition of lime was very effective for reduction ofbioavailability of heavy metals during composting of water hyacinth with cattle manure and sawdust.