期刊文献+

气流床煤加氢气化反应器的数值模拟及流场特性分析

Numerical simulation of the flow field characteristics in an entrained flow coal hydrogasifier
原文传递
导出
摘要 该文通过对Rockwell公司开发的6t/d的气流床煤加氢气化反应器的3维数值模拟,模拟了加氢气化反应器内的流场和反应过程。模拟采用了Johnson和Tran的加氢热解动力学模型,并且考虑了焦油的加氢裂解反应。数值模拟预测结果和6t/d加氢气化反应器的实验结果符合得较好。模拟结果表明:加氢气化反应器内的流场可以分为交叉撞击区、射流-回流区和管流区3个区域。一次脱挥发分反应在煤粉和炽热氢气快速混合后的很短时间内就能完成,甲烷主要在交叉撞击区和射流-回流区生成,加氢气化反应器下部大部分区域为管流区。在交叉撞击区及射流-回流区,颗粒粒径越小则颗粒升温及失去质量越早;在管流区,颗粒粒径对颗粒的质量变化及温度历程影响不大。 The flow field and reaction processes in a coal hydrogasifier reactor were modeled using a three-dimensional numerical model of Rockwell's 6 t/d entrained flow coal hydrogasifier using the hydropyrolysis kinetic model developed by Johnson and Tran as well as tar hydrocracking reactions. The numerical predictions were in good agreement with experimental results for the 6 t/d hydrogasifier. The simulations show that the flow field in the hydrogasifier can be categorized into a cross-flow impinging region, a jet-reflux flow region, and a plug flow region. The primary devolatilization reactions are complete immediately after the rapid mixing of the hot hydrogen and coal particles. The methane is mainly produced in the cross-flow impinging region and jet-ref).ux region. Most of the lower hydrogasifier has plug flow. Small particles are heated and lose weight faster in the cross-flow impinging region and jet-reflux flow region, while in the plug flow region, the particle size has minor effect on the particle temperature and mass history.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第10期1098-1104,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2011AA05A201)
关键词 气化方法 煤加氢气化 数值模拟 气流床 gasification method coal hydrogasification numerical simulation entrained flow
  • 相关文献

参考文献21

  • 1Zhang A, Kaiho A, Yasuda H, et al. Fundamental studies on hydrogasification of Taiheiyo coal ]-J:. Energy, 2005, 30(11/12) : 2243 - 2250.
  • 2Friedman J. Development of a Single-Stage, Entrained-Flow, Short-Residence-Time Hydrogasificr :R:. FE-2518-24. Canoga Park, CA, USA: Rockwell International, 1979.
  • 3Johnson J L, Tran D Q. Kinetics of Devolatilization and Rapid-Rate Methane Formation [R]. GRI-78/0049. Chicago, IL, USA: Institute of Gas Technology, 1980.
  • 4Kalinenko R A, Levitskii A A, Polak L S, et al. Calculation and theoretical investigation of processes occurring in the pyrolysis and hydropyrolysis of coal I-J]. Kinetics and Catalysis, 1985, 26(6): 1149- 1156.
  • 5Sprouse K M. Modeling pulverized coal conversion in entrained flows [J]. AIChE Journal, 1980, 26(6): 964 - 975.
  • 6Goyal A, Gidaspow D. Modeling of entrained flow coal hydropyrolysis reactors. 1: Mathematical formulation and experimental-verification [J]. Industrial g: Engineering Chemistry Process Design and Development, 1982, 21(4): 611 - 624.
  • 7Goyal A, Gidaspow D. Modeling of entrained flow coal hydropyrolysis reactors. 2 : Reactor design [J]. Industrial :- Engineering Chemistry Process Design and Development, 1982, 21(4): 625-632.
  • 8Asaoka Y, Azuma T, Kawamoto M, et al. Development of coal hydrogasification technology. 3: Simulation incorporated the hydro-pyrolysis model into computational fluid dynamics rC]// 17th Annual International Pittsburgh Coal Conference. Pittsburgh, PA, USA, 2000.
  • 9YAN Linbo, HE Boshu, PEI Xiaohui, et al. Kinetic models for coal hydrogasification and analyses of hydrogasification characteristics in entrained-flow gasifiers [J]. Energy & Fuels, 2013, 27 (11): 6388-6396.
  • 10YAN Linbo, HE Boshu, PEI Xiaohui, et al. Computational-fluid-dynamics-based evaluation and optimization of an entrained-flow gasifier potential for coal hydrogasification [J]. Energy & Fuels, 2013, 27(11): 6397- 6407.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部