期刊文献+

Novel supervised classification approach for multifrequency polarimetric SAR data

Novel supervised classification approach for multifrequency polarimetric SAR data
下载PDF
导出
摘要 A novel method is proposed for the supervised classification of multifrequency polarimetric synthetic aperture radar (PolSAR) images. The coherency matrices in P-, L-, and C-bands are mapped onto a 9×9 matrix Ω based on the eigenvalue decomposition of the coherency matrix of each band. A boxcar filter is then performed on the matrix Ω. The filtered data are put into a complex Wishart classifier. Finally, the effectiveness of the proposed method is demonstrated with JPL/AIRSAR multifrequency PolSAR data acquired over the Flevoland area. A novel method is proposed for the supervised classification of multifrequency polarimetric synthetic aperture radar (PolSAR) images. The coherency matrices in P-, L-, and C-bands are mapped onto a 9×9 matrix Ω based on the eigenvalue decomposition of the coherency matrix of each band. A boxcar filter is then performed on the matrix Ω. The filtered data are put into a complex Wishart classifier. Finally, the effectiveness of the proposed method is demonstrated with JPL/AIRSAR multifrequency PolSAR data acquired over the Flevoland area.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1216-1221,共6页 系统工程与电子技术(英文版)
基金 supported in part by the National Natural Science Fundation of China(41171317 61132008 61490693) Aeronautical Science Foundation of China(20132058003)
关键词 synthetic aperture radar (SAR) POLARIMETRY classifi-cation multifrequency. synthetic aperture radar (SAR), polarimetry, classifi-cation, multifrequency.
  • 相关文献

参考文献1

二级参考文献8

  • 1王红岗,黄晓涛,金添.UWB SAR非均匀区域目标检测方法[J].现代雷达,2005,27(7):35-38. 被引量:4
  • 2Jin tian,Zhou zhimin,Chang wenge.UWBWA SAR Imaging Modeling and It's Time-Frequency Processing[C].IEEE 7 th International Conference on Signal Processing,Beijing:China,Aug.31-Sept.4:1930-1933.
  • 3Ghasem Mirjalily,Luo zhi-quan,Timothy N Davidson,et al.Blind adaptive decision fusion for distributed detection[J].IEEE Trans.on Aerospace and Electronic Systems,2003,39(1):34-52.
  • 4Martin E Liggins II,Mark A Nebrich.Adaptive multi-image decision fusion,In Signal Processing,Sensor Fusion,and Target Recognition Ⅸ[J].Proceedings of SPIE,2000,4052(8):218-228.
  • 5Michael E S,Pramod K V.Intelligent CFAR processor based on data variability[J].IEEE Trans.on Aerospace and Electronic Systems,2000,36(3):837-847.
  • 6Wuyan,Liming,Yangwanhai.Optimal distributed decision fusion in the sense of the neyman-pearson Test[C].Radar 2001,CIE International Conference on Proceedings,Beijing:China,2001:708-712.
  • 7Ming Xiang,junwei Zhao.On the performance of distributed neyman-pearson detection systems[J].IEEE Trans.on Systems,Man And Cybernetics,2001,31(1):78-83.
  • 8张直中.合成孔径雷达(SAR)的最新发展[J].现代雷达,2003,25(1):1-8. 被引量:16

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部