期刊文献+

自由曲面索承网格结构的合理布索位置研究

Rational cable location study on cable supported lattice structure of free form surface
下载PDF
导出
摘要 为了给出自由曲面索承网格结构的合理布索位置,首先,将上部网格结构作为连续体,基于鲁棒性定量评价指标,采用改进的大爆炸算法,进行拓扑优化,获得自由曲面的鲁棒构型;其次,利用Hough变换对鲁棒构型进行检测,在布索数量确定后,提取决定布索曲线方向的参数;最后,对布索曲线上的全部节点进行试算,优化出布索曲线端点。算例表明,该方法可为复杂自由曲面索承网格结构优化出基于力学原理的合理布索方案,同时,通过与直观布索方案的对比,证明了本文求得的布索方案具有更好的力学性能,可为实际工程应用提供参考。 This article gives the rational cable location of the free form surface lattice structure as follows. First of all,the robust configuration of the free form surface whose upper lattice structure was treated as a continuum was got by topology optimization which applied robust quantitative evaluation index and the improved Big Bang-Big Crunch method. Then, the directions~ parameters of the cable location curves whose number was already given were extracted by detecting the robust configuration applying Hough transformation. Finally,the optimum endpoints of the cable location curves were got by calculating all nodes on the cable location curves. Examples show that, for complex free form surfaces, this method can offer rational cable locations based on the mechanical principle. Comparison with the intuitive cable arrangement shows that the cable arrangement got in this article has better mechanical properties, thus it can provide guidance for practical engineering applications.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第6期739-744,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51178414) 高等学校博士学科专项科研基金(20120101110023)资助项目
关键词 自由曲面 索承网格结构 鲁棒构型 HOUGH变换 合理布索位置 free form surface cable supported lattice structure robust configuration Hough transformation rational cable location
  • 相关文献

参考文献11

  • 1郭佳民,董石麟,袁行飞,侯永利,冯蕾.布索方式对弦支穹顶结构稳定性能的影响研究[J].土木工程学报,2010,43(S2):9-14. 被引量:9
  • 2He Y J,Zhou X H,Zhang X T. Finite element analy-sis of the elastic static properties and stability of pre-tensioned cylindrical reticulated mega-structures [J ].Thin-Walled Structures ,2012.60:1-11.
  • 3Starossek U. Haberland M. Disproportionate co-llapse ;terminology and procedures [J]. Journal ofPerformance of Constructed Facilities2010.24(6):519-528.
  • 4张成,吴慧,高博青,董石麟.非概率不确定性结构的鲁棒性分析[J].计算力学学报,2013,30(1):51-56. 被引量:8
  • 5单艳玲,高博青.基于连续体拓扑优化的网壳结构鲁棒构型分析[J].浙江大学学报(工学版),2013,47(12):2118-2124. 被引量:3
  • 6Doyle J C,Glover K, Khargonekar P P,et al. State-space solutions to standard Hz and Hoo control prob-lems [J]. Automatic Control,IEEE TYansactionson,1989,34(8):831-847.
  • 7Takezawa A,Nii S,Kitamura M,et al. Topology opti-mization for worst load conditions based on the eigen-value analysis of an aggregated linear system [J].Computer Methods in Applied Mechanics and Engi-2011,200(25) :2268-2281.
  • 8Rozvany G I N. A critical review of established meth-ods of structural topology optimization [J]. Structu-ral and Multidisciplinary Optimization. 2009,37(3):217-237.
  • 9单艳玲,叶俊,高博青,董石麟.弦支双曲扁网壳结构的鲁棒构型分析及试验研究[J].建筑结构学报,2013,34(11):50-56. 被引量:5
  • 10Erol O K,Eksin I. A new optimization method : BigBang-Big Crunch[J], Advances in Engineering So ft-ware,2006,37(2):106-111.

二级参考文献33

  • 1张爱林,张晓峰,葛家琪,刘学春,王冬梅,张宝勤.2008奥运羽毛球馆张弦网壳结构整体稳定分析中初始缺陷的影响研究[J].空间结构,2006,12(4):8-12. 被引量:32
  • 2邱志平,陈吉云,王晓军.结构鲁棒优化的非概率集合理论凸方法[J].力学学报,2005,37(3):295-300. 被引量:3
  • 3杨联萍,林智斌,钱若军.网壳结构的屈曲分析研究(三):屈曲路线跟踪方法[J].空间结构,2006,12(2):11-17. 被引量:3
  • 4Zaini A A, Endut I R, Shehu Z. A preliminary study of the subcontractor' s risk identification for the construction projects C 1// ISBEIA 2012 IEEE Symposium on Business, Engineering and Industrial Applications, Bandung: IEEE Computer Society, 2012: 878-883.
  • 5Hampel F R, Ronchetti E M, Rousseeuw P J, et al. Robust statistics: the approach based on influence functions[M]. New York: John Wiley & Sons, 2011: 1-18.
  • 6Takezawa A, Nii S, Kitamura M, et al. Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system [ J ]. Computer Methods in Applied Mechanics and Engineering, 2011, 200 (25/26/27/28) : 2268-2281.
  • 7ZUO Zhihao, XIE Yimin, HUANG Xiaodong. Evolutionary topology optimization of structures with multiple displacement and frequency constraints [ J ]. Advances in Structural Engineering, 2012, 15 (2): 359-372.
  • 8Erol O K, Eksin I. A new optimization method: big bang-big crunch [ J ]. Advances in Engineering Software, 2006, 37(2): 106-111.
  • 9Kaveh A, Talatahari S. Optimal design of single layer domes using meta-heuristic algorithms: a comparative study [ J ]. International Journal of Space Structures, 2010, 25(4) : 217-227.
  • 10JGJ 61-2003.网壳结构技术规程[S],2003.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部