2S Sivaraman and M M TrivediLooking at Vehicles on theRoad:A Survey of Vision- Based Vehicle Detection,Trackingand Behavior Analysis. IEEE Trans.Intell. Transp.Syst.,2013,14(.4): 1773 - 1792.
3N.Buch,S-A.Velastin and J.Orwell. “A review of computer vi-sion techniques for the analysis of urban traffic,” IEEE Trans.Intell. Transp. Syst,2011,12(3): 920-939.
4Song Huansheng’Lu Shengnan,Ma Xiang, et al. Vehicle Be-havior Analysis Using Target Motion Trajectories[J].IEEETransactions on Vehicular Technology,2014,63(8):3580-3591.
4MANUEL V, JOSE M M, FEDERICO B. An enhanced back- ground estimation algorithm for vehiele detection in urban traffic scenes[J]. IEEE Trans. Vehicular Technology, 2010, 59 (8) : 3694-3709.
5STAUFFER C,GRIMSON W. Adaptive background mixture mod- els for real-time tracking[C1//Proc. Computer Vision and Pattern Recognition. LISA : IEEE Press, 1999 : 246-252.
6EI,GAMMAL A, DURAISWAM R, DAVIS L S. Eflieient kernel density estimation using the fast Gauss transfi)rm with applica- tion to segmentation and traeking[C]//Proc, the 8+ IEEE Interna- tional Conference on Computer Vision. Canada: IEEE Press, 2001,25( 11 ) : 1499-1504.
7KAEW T P, BOWDEN R. An improved adaptive background mix- ture model for reahime tracking with shadow detection[C]// Prnc. the 2rid European Worksbup nn Advanced Video Based Surveil- lanee Systems, Kingston: Kluwer Academic Publishers, 2001,53 (8): 1-5.
8ZIVKOVIC Z, VANDER H F. Recursive unsupervised learning of finite mixture models[J]. IEEE Trans. Pattern Analysis and Ma- chine Intelligence, 2004,26(5 ) : 651-656.
9ANURAG M, NIKOS P. Moti.n-Based background subtraction using adaptive kernel density estimatinn[C]// Proc. the 2004 IEEE Conference on Computer Vision and Pattern Reeognition. USA : IEEE Press, 2004,2 : 302-309.
10KATO J, JOGA S, RITTSCHER J. An HMM-based segmenta- tion method for traffic monitoring movies[J]. IEEE Trans. Pat- tern Analysis anti Machine Intelligence, 2002, 24 (9) : 1291-1296.