期刊文献+

功能梯度板动力分析的光滑有限元法研究 被引量:2

Smoothed Finite Element Method for Dynamic Analysis of Functionally Graded Plate
原文传递
导出
摘要 为提高功能梯度板动响应问题求解精度,基于一阶剪切变形板理论,提出了求解功能梯度板自由振动问题的Cell-Based光滑有限元格式.功能梯度板材料属性沿厚度方向呈梯度连续变化,计算系统刚度矩阵时在光滑域内进行光滑梯度操作,可提高求解精度.采用Cell-Based光滑有限元法,讨论了长厚比、形状因子和边界条件对两种典型功能梯度方板无量纲频率参数的影响,并与FEM法的解和文献中的解做了对比.数值算例的结果表明,光滑梯度操作可改善有限元系统的刚度,Cell-Based光滑有限元法的计算结果更加逼近真实解,从而为功能梯度材料的进一步应用打下基础. In order to improve the accuracy of resolution of the dynamic response of a functionally graded plate,based on the first-order shear deformation plate theory,the Cell-Based smoothed finite element method scheme for solving functionally graded plate free vibration problems was put forward. The material properties were assumed to be graded in the thickness direction,and the global stiffness matrix of the system was computed using smoothing operations over the smoothing domains,which can improve the accuracy of calculation. The influencies of plate length-to-thickness ratio,gradient index and boundary condition on the natural frequencies of the functionally graded plates were investigated in detail,and the result was compared with those of FEM and references. Numerical examples show that the smoothed gradient system can improve the calculation of rigidity by finite element method. Cell-Based smoothed finite element method is more close to the real solution,and thus lays the foundation for further application of functionally graded materials.
出处 《力学季刊》 CSCD 北大核心 2015年第4期713-720,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(51178206) 吉林省科技厅高新资助项目(20130305006GX) 吉林省教育厅"十二五"科学技术研究项目(2015-276)
关键词 功能梯度板 Cell-Based光滑有限元法 光滑梯度操作 自由振动 functionally graded plate Cell-Based smoothed finite element method smoothing graded operations free vibration
  • 相关文献

参考文献18

  • 1LIU G R, NGUYEN T T, DAI K Y, et al. Theoretical aspects of the smoothed finite element method (SFEM)[J]. International Journal for Numerical Methods in Engineering, 2007, 71(8):902-930.
  • 2YANG Y, KOU K P, LU V P, et al. Free vibration analysis of two-dimensional functionally graded structures by a meshfree boundary-domain integral equation method[J]. Composite Structures, 2014, 110:342-353.
  • 3ZHAO X, LIEW K M. Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198:2796-0811.
  • 4WANG D, CHEN J S. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193:1065-1083.
  • 5WANG D, LIN Z. Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration[J]. Computational Mechanics, 2010, 46:703-719.
  • 6NGUYEN-XUAN H, TRAN L V, THAI C H, et al. Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing[J]. Thin-Walled Structures, 2012, 54:1-18.
  • 7DAr K Y, LIU G R. Free and forced vibration analysis using the smoothed finite element method (SFEM)[J]. Journal of Sound and Vibration, 2007, 301:803-820.
  • 8NGUYEN-XUAN H, NGUYEN-THO! T. A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates[J]. Communications in Numerical Methods in Engineering, 2009, 25(8):882-906.
  • 9NGUYEN-XUAN H, LIU G R, THAI-HOANG C, et al. An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199:471-89.
  • 10张玉华,周立明,田为军.基于光滑节点域有限元的虚拟裂纹闭合技术[J].力学季刊,2015,36(1):134-140. 被引量:4

二级参考文献49

  • 1朱昊文,李尧臣,杨昌锦.功能梯度压电材料板的有限元解[J].力学季刊,2005,26(4):567-571. 被引量:8
  • 2解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.18-20.
  • 3Chen WQ, Dong HJ. On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mechanica, 2002, 153(3-4): 207-216.
  • 4Reddy JN. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 2000, 47(1-3): 663-684.
  • 5Tanigawa Y, Matsumoto M, Akat T. Optimization problem of material composition for nonhomogeneous plate to minimize thermal stresses when subjected to unsteady heat supply. Transactions of the Japan Society of Mechanical Engineers, Series A, 1996, 62 (593): 115-122.
  • 6Noda N, Tsuji T. Steady thermal stresses in a plate of functionally gradient material. Transactions o] the Japan Society of Mechanical Engineers, Series A, 1991, 57(533): 98-103.
  • 7Yang J, Kitipornchai S, Liew KM. Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates. Computational Methods Applied Mechanics Engineering, 2003, 192(35-36): 3861-3885.
  • 8Croce LD, Venini P. Finite elements for functionally graded Reissner-Mindlin plates. Computational Methods Applied Mechanics Engineering, 2004, 193(9-11): 705-725.
  • 9Gong SW, Lain KY, Reddy JN. The elastic response of functionally graded cylindrical shell to low-velocity impact. International Journal of Impact Engineering, 1999, 22(4): 397-417.
  • 10Wu XH, Chen CQ, Shen YP, et al. A high order theory for functionally graded piezoelectric shells. International Journal of Solids and Structures, 2002, 39(20): 5325-5434.

共引文献22

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部