期刊文献+

高量程压阻式加速度计的Hopkinson杆冲击测试及失效分析 被引量:5

Impact test and failure analysis of high-range piezo-resistive accelerometer based on Hopkinson bar
下载PDF
导出
摘要 为了保证高量程加速度计在冲击过程中的可靠性、有效性,减小其失效几率,以Hopkinson杆作为加载手段,采用激光干涉法对量程为1.0′10~5 g_n的4端全固支压阻式梁-岛结构微加速度计进行冲击试验,并分析了高量程加速度计抗过载能力及在冲击环境下失效模式和失效机理。试验中抽样对同种结构的10只传感器分别进行了冲击测试,根据测试结果可知,该结构的微加速度计抗过载能力为1.3′10~5g_n。通过分析可知失效模式主要表现为微结构梁的断裂、裂纹、键合点脱落现象。通过研究失效模式产生的原因发现,造成结构出现断裂、裂纹现象的原因主要有两种:一是重复连续冲击测试引起微结构疲劳产生失效;二是由于在冲击过程中加速度计芯片与该过程中产生的高频信号分量发生共振导致过载瞬间增大加速度计芯片结构位移失控使结构失效。通过采用不同手段完善传感器结构,提高了其可靠性。 In order to guarantee the validity and reliability of high-range accelerometer in the process of impact and reduce its failure probability, a Hopkinson-bar laser shock test was carried out for the measured range of 1.0′10~5g_n micro-accelerometer with four-pole fixed-beam structure. Meanwhile the shockresistibility of accelerometer was studied, and the failure mode and failure mechanism of high-range accelerometer in shock environment were discussed. In the test, 10 accelerometers with the same kind of structure were sampled to conduct the shock test. Test results show that the shock-resistance capability of the micro-accelerometer is 1.3′10~5 g_n. The cantilever fracture, cantilever crack, and wire bond shearing on the beam are the main failure modes of the micro-accelerometer. In the end, the causes of failure mode were analyzed, which show that there are two main factors that cause the fracture and crack of the cantilever: One is the repeating shock tests which lead to micro-structure fatigue failure, the other is the resonance between the sensor chip and the high-frequency signal in the shock test process, which instantly enlarges the overload and leads to the sensor's broken due to micro-structure displacement's out of control. Test results show that the reliability is improved through using several means to improve the structures of the acceleration sensors.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2015年第6期845-848,共4页 Journal of Chinese Inertial Technology
基金 国家自然科学基金杰出青年(51225504)
关键词 MEMS加速度计 HOPKINSON杆 抗过载能力 失效模式 失效机理 MEMS accelerometer Hopkinson bar shock-resistibility failure mode failure mechanism
  • 相关文献

参考文献10

  • 1Levy R, Gaudineau V. Phase noise analysis and performance of the vibrating beam accelerometer[C]//2010 1EEE International Frequency Control Symposium. 2010:511-514.
  • 2Traon O L, Janiaud D, Guerard J, et al. The fairy world of quartz vibrating MEMS[C]//2012 European Frequency and Time Forum. 2012: 214-220.
  • 3Shi Y, Zhu Z, Liu X. Dynamic property test of a novel high g microaccelerometer[C]//2009 8th IEEE International Conference on ASIC. 2009: 633-635.
  • 4岳鹏,史震,王剑,杨杰.基于MEMS加速度计的无陀螺惯导系统[J].中国惯性技术学报,2011,19(2):152-156. 被引量:19
  • 5Cao Hui-liang. Investigation of a vacuum packaged MEMS gyroscope architecture's temperature robustness[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 41(4): 495-506.
  • 6曹慧亮,李宏生,王寿荣,杨波,黄丽斌.MEMS陀螺仪结构模型及系统仿真[J].中国惯性技术学报,2013,21(4):524-529. 被引量:18
  • 7焦新泉,陈家斌,尹静源,孟丁.一种大过载MEMS加速度计新型封装方法[J].中国惯性技术学报,2013,21(4):536-539. 被引量:2
  • 8Methods for the Calibration of Vibration and Shock Pick-ups-part23--Primary Shock Calibration Using Laser Interferometry[S]. GB/T 13823.2-1992.
  • 9Walraven J A. Failure analysis issues in microelectro me-chanical systems[J]. Micro -electronics Reliability, 2005, 45: 1750-1757.
  • 10郇勇,张泰华,杨业敏,曾昭君.用Hopkinson杆冲击加载研究高量程微加速度计芯片的抗过载能力[J].传感技术学报,2003,16(2):128-131. 被引量:14

二级参考文献32

  • 1李玉龙,郭伟国,贾德新,徐绯.高g值加速度传感器校准系统的研究[J].爆炸与冲击,1997,17(1):90-96. 被引量:45
  • 2夏敦柱,周百令,王寿荣.实时小波滤波方法在硅微陀螺仪中的应用研究[J].中国惯性技术学报,2007,15(1):92-95. 被引量:9
  • 3黄全平(Huang Quanping).[D].中国科学院上海微系统与信息技术研究所(Institute of Microsystem & Information Technology, Chinese Academy of Sciences),2001.
  • 4Li Fangneng,Zhou Hongjin,Liu Xiaofu.Research on GPS aided GFINS extend loose integration navigation method[C]//The Third International Symposium on Test Automation & Instrumentation,2010:1358-1362.
  • 5Ying Kun Peng,Golnaraghi M F.A vector-based gyrofree inertial navigation system by integrating existing accelerometer network in a passenger vehicle[C]//IEEE Position Location and Navigation Symposium.USA,2004:234-242.
  • 6Xiaowei Liu,Haifeng Zhang,Guangming Li,et al.Design of micro-machined accelerometer and capacitive sensing circuits[C]//Proceedings of the Second Asia International Symposium on Mechatronics.HongKong,2006:21-25.
  • 7Danelle M. Tanner, Jeremy A. Walraven, IGuen Helgesen,et al. MEMS reliability in shock environments[C]. In:San jose, IEEE. International leliability Physics Symposium, CA,April 10-13,2000,129-138.
  • 8Ueda K, Umeda A. Characterization of Shock Accelerometers Using Davies Bar and Strain-gages [J]. Experimental Mechanics, 1993,8(2) :228 - 233.
  • 9黄全平.[D].中国科学院上海微系统与信息技术研究所,2001.
  • 10Erdinc T, Said E A, Tayfun A. Quadrature-error compen- sation and corresponding effects on the performance of fully decoupled MEMS gyroscopes[J]. Journal of Micro- electromechanical Systems, 2012, 21(3): 656-667.

共引文献49

同被引文献29

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部