期刊文献+

石油钻井过程故障检测的多模核主元分析方法

Multimode Kernel Principal Component Analysis Method of Drilling Process Fault Detection
下载PDF
导出
摘要 提出了一种适用于石油钻井过程故障检测的多模核主元分析方法.首先,利用门限值分类算法对过程数据进行分类,可以得到钻井过程各个稳态工况下的数据;其次,取不同工况的数据分别建立相对应的核主元模型,将这些核主元模型组合到一起构成一个核主元模型组进行故障检测.经实验数据分析,该检测方法适用于石油钻井过程,提高了检测灵敏度并减少了误差. A kernel principal component analysis( KPCA) method applicable to the drilling process fault detection was put forward. Firstly,process data were classified by using threshold classification algorithm,and the data of the steady state condition were obtained. Secondly,according to the classification data the corresponding KPCA model was established,and these corresponding KPCA models were combined together to realize fault detection. After multiple tests,the method was proved to be suitable for fault detection of drilling process,the detection sensitivity was improved and the error was reduced.
作者 王杰 李璐
出处 《郑州大学学报(理学版)》 CAS 北大核心 2015年第4期113-118,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号61473266
关键词 门限值分类 变工况过程 核主元分析 故障检测 threshold classification varying working condition kernel principal component analysis fault detection
  • 相关文献

参考文献12

二级参考文献102

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部