期刊文献+

Systematic CDCC calculations for ~11Be+p elastic scattering

Systematic CDCC calculations for ~11Be+p elastic scattering
原文传递
导出
摘要 Continuum discretised coupled-channels (CDCC) method with a 10Be(0+) + n two-body cluster model is applied to systematically analyze the elastic scattering of the halo nucleus alBe from the proton target at various incident energies below 100 MeV/nucleon. Using the renormalized 10Be-p potential deduced from the 10Be + p elastic scattering data, the differential cross sections of 11 Be + p scattering are well reproduced by the CDCC calculations without any further adjustment parameters, demonstrating the applicability of this approach for describing the scattering of exotic nuclei based on the scattering of the less exotic core nuclei. Continuum discretised coupled-channels(CDCC) method with a ^(10)Be(0^+) + n two-body cluster model is applied to systematically analyze the elastic scattering of the halo nucleus ^(11)Be from the proton target at various incident energies below 100 MeV/nucleon.Using the renormalized ^(10)Be- p potential deduced from the ^(10)Be+ p elastic scattering data, the differential cross sections of ^(11)Be + p scattering are well reproduced by the CDCC calculations without any further adjustment parameters, demonstrating the applicability of this approach for describing the scattering of exotic nuclei based on the scattering of the less exotic core nuclei.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第3期70-74,共5页 中国科学:物理学、力学、天文学(英文版)
基金 the National Basic Research Program of China(Grant No.2013CB834402) the National Natural Science Foundation of China(Grant Nos.11275001,10905002,11275011,11275018,and 11035001) China Postdoctoral Science Foundation(Grant No.20100470133)
关键词 elastic scattering CDCC 11Be 弹性散射 计算 系统 混合 散射微分截面 耦合通道 入射能量 质子晕核
  • 相关文献

参考文献40

  • 1A. E. Lovell, and F. M. Nunes, J. Phys. G 42, 034014 (2015).
  • 2Y. L. Ye, D. Y. Pang, G. L. Zhang, D. X. Jiang, T. C. Zheng, and Z. H. Li, J. Phys. G 31, S1647 (2005).
  • 3Y. L. Ye, D. Y. Pang, D. X. Jiang, J. L. Lou, Z. X. Cao, and T. C. Zheng, Phys. Rev. C 71, 014604 (2005).
  • 4J. Q. Faisal, J. L. Lou, Y. L. Ye, Z. X. Cao, D. X. Jiang, T. Zheng, H. Hua, Z. H. Li, X. Q. Li, Y. C. Ge, D. Y. Pang, Q. T. Li, J. Xiao, L. H. Lv, R. Qiao, H. B. You, R. J. Chen, F. Lu, H. Sakurai, H. Otsu, M. Nishimura, S. Sakaguchi, H. Baba, Y. Togano, K. Yoneda, C. Li, S. Wang, H. Wang, K. A. Li, T. Nakamura, Y. Nakayma, Y. Kondo, S. Deguchi, Y. Satou, and K. H. Tshoo, Chin. Phys. Lett. 27, 092501 (2010).
  • 5J. L. Lou, Y. L. Ye, D. Y. Pang, Z. X. Cao, D. X. Jiang, T. Zheng, H. Hua, Z. H. Li, X. Q. Li, Y. C. Ge, L. H. Lv, J. Xiao, Q. T. Li, R. Qiao, H. B. You, and R. J. Chen, Phys. Rev. C 83, 034612 (2011); H. Al Falou, R. Kanungo, C. Andreoiu, D. S. Cross, B. Davids, M. Djongolov, A. T. Gallant, N. Galinski, D. Howell, R. Kshetri, D. Niamir, J. N. Orce, A. C. Shotter, S. Sjue, I. Tanihata, I. J. Thompson, S. Triambak, M. Uchida, P.Walden, R. B. Wiringa, and R. Kanungo, Phys. Lett. B 721, 224 (2013).
  • 6J. L. Lou, Y. L. Ye, D. Y. Pang, and D. X. Jiang, J. Phys. G 420, 012076 (2013); A. M. Moro, and R. Crespo, Phys. Rev. C 85, 054613 (2012).
  • 7A. Di Pietro, G. Randisi, V. Scuderi, L. Acosta, F. Amorini, and M. J. G. Borge, Phys. Rev. Lett. 105, 022701 (2010).
  • 8A. Di Pietro, V. Scuderi, and A. M. Moro, Phys. Rev. C 85, 054607 (2012).
  • 9T. Druet, and P. Descouvemont, Eur. Phys. J. A 48, 147 (2012).
  • 10M. Takashina, Y. Sakuragi, and Y. Iseri, Eur. Phys. J. A 25, 273 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部