期刊文献+

UQT-样条曲线曲面的融合及其应用 被引量:2

Integration and Application of UQT-spline Curves and Surfaces
下载PDF
导出
摘要 在计算机辅助几何设计中,封闭曲线曲面的表示通常采用拼接的方法,但这种方法的计算相对较为复杂,且连续阶不高,为了更好地表示封闭的曲线曲面,提出一种非均匀四次三角样条(UQT-样条)曲线曲面的融合方法。构造UQT-样条基函数,讨论基于五点分段的UQT-样条曲线的性质以及曲面性质,利用曲线融合的思想,构造UQT-样条融合曲线和曲面,并研究其性质。实验结果表明,该融合的曲线曲面能较好地表示封闭的曲线曲面,且不需要添加额外的控制顶点,便于交互。 In computer aided geometric design,the representation of closed curves and surfaces usually uses the method of joint,but this method is relatively complex and has lower continuity. In order to better represent the closed curve and surface,the integration method of non Uniform Quartic Triangular Spline( UQT-spline) is proposed. Firstly UQT-spline basis functions are constructed and the properties of the UQT-spline curves based on five points are discussed,then the UQT-spline curves and surfaces are constructed by using the idea of blending curve. Experimental results show that the integration of curve and surface can well represent closed curves and surfaces with no additional control points,and are easy to interact.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第2期236-241,248,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61402010) 安徽省高等学校自然科学研究基金资助项目(KJ2015A328 KJ2015JD16 KJ2014A041)
关键词 三角样条 融合 连续性 封闭的曲线曲面 形状参数 trigonometric spline integration continuity closed curve and surface shape parameter
  • 相关文献

参考文献12

二级参考文献26

共引文献133

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部