期刊文献+

基于电机驱动系统的齿轮故障诊断方法综述 被引量:23

Review of Gear Fault Diagnosis Methods Based on Motor Drive System
下载PDF
导出
摘要 齿轮故障诊断技术对减少工业事故所造成的人员伤亡和经济损失具有重要的意义。首先介绍了振动诊断法和噪声分析法,然后重点对基于电机驱动系统的齿轮故障诊断方法做了综述。振动诊断法和噪声分析法属于常用的齿轮故障诊断方法,这两种方法分别需要安装振动传感器和声音传感器,齿轮传动机构结构紧密而且构造复杂,安装机械传感器多有不便。电机电流特征分析法、负载转矩特征分析法和运动误差辨识法是基于电机驱动系统的无创诊断方法,电机电流、负载转矩以及运动误差信号都承载有齿轮的故障信息,电机电流信号可以从电机驱动器处获得,负载转矩和运动误差信号借助于辨识器也可以从驱动器处获得,避免了安装机械传感器的需求。同时分析了各种诊断方法的优缺点,总结现有研究成果及有待解决的问题,展望了未来的研究方向。 Gear fault diagnosis technology is losses caused by industrial accidents. This paper significant in reducing casualties and economic first introduces vibration diagnosis method and acoustic analysis method, and then summarizes gear fault diagnosis methods for motor drive system. Vibration diagnosis and acoustic analysis are the two commonly used methods for gear fault diagnosis, where the vibration sensor and acoustic sensor need to be installed respectively. Due to the complexity of gear transmission structure, mechanical sensors are inconvenient to be installed. Motor current signature analysis, load torque signature analysis and kinematic error estimation are non-invasive methods for motor drive system. Motor current, load fault information. Motor current can be obtained from torque and kinematic error signals contain gear the motor drive, while load torque and kinematic error can also be obtained from motor drive through estimators. Thus the requirement of mechanical sensor installation can be avoided. This paper analyzes the advantages and disadvantages of various diagnosis methods, summarizes the existing research results and the current problems, and forecasts the future research directions.
出处 《电工技术学报》 EI CSCD 北大核心 2016年第4期58-63,共6页 Transactions of China Electrotechnical Society
基金 国家科技重大专项资助项目(2012ZX04001051)
关键词 齿轮 故障诊断 电机驱动 电机电流特征分析 负载转矩信号分析 Gear, fault diagnosis, motor drive, motor current signature analysis, load torquesignature analysis
  • 相关文献

参考文献24

  • 1杭俊,张建忠,程明,王伟,张明.风力发电系统状态监测和故障诊断技术综述(英文)[J].电工技术学报,2013,28(4):261-271. 被引量:52
  • 2刘毅华,王媛媛,宋执环.基于平稳小波包分解和希尔伯特变换的故障特征自适应提取[J].电工技术学报,2009,24(2):145-149. 被引量:14
  • 3Han L R. Gear fault detection and diagnosis based on Hilbert-Huang transform[C]//3rd International Cong- ress on Image and Signal Processing (CISP), 2010, 7: 3323-3326.
  • 4徐斌,徐德城,朱卫平,刘冰野.希尔伯特-黄变换方法的改进[J].西北工业大学学报,2011,29(2):268-272. 被引量:24
  • 5Kia S H, Henao H, Capolino G A. A comparative study of acoustic, vibration and stator current signatures for gear tooth fault diagnosis[C]//20th International Conference on Electrical Machines (ICEM), 2012: 1514-1519.
  • 6Tian H, Tang L W, Yang T Q. Application of acoustic testing for gear wearing fault diagnosis[C]//The Eighth International Conference on Electronic Measurement and Instruments, 2007, 3: 635-638.
  • 7Baydar N, Ball A. A comparative study of acoustic and vibration signals in detection of gear failures using WIGNER-VILLE distribution[J]. Mechanical Systems and Signal Processing, 2001, 15(6): 1091- 1107.
  • 8Baydar N, Ball A. Detection of gear failures via vibration and acoustic signals using wavelet trans- form[J]. Mechanical Systems and Signal Processing, 2003. 17(4): 787-804.
  • 9Kia S H, Henao H, Capolino G A. Gear tooth surface damage fault detection using induction machine electrical signature analysis[C]//9th IEEE Inter- national Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), 2013: 358-364.
  • 10Saadaoui W, Jelassi K. Gearbox-induction machine bearing fault diagnosis using spectral analysis[C]// Second UKSIM European Symposium on Computer Modeling and Simulation, 2008: 347-352.

二级参考文献47

共引文献130

同被引文献244

引证文献23

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部