期刊文献+

短文本理解研究 被引量:50

Short Text Understanding:A Survey
下载PDF
导出
摘要 短文本理解是一项对于机器智能至关重要但又充满挑战的任务.这项任务有益于众多应用场景,如搜索引擎、自动问答、广告和推荐系统.完成这些应用的首要步骤是将输入文本转化为机器可以诠释的形式,即帮助机器"理解"短文本的含义.基于这一目标,许多方法利用外来知识源来解决短文本中语境信息不足的问题.通过总结短文本理解领域的相关工作,介绍了基于向量的短文本理解框架.同时,探讨了短文本理解领域未来的研究方向. Short text understanding is an important but challenging task relevant for machine intelligence. The task can potentially benefit various online applications, such as search engines, automatic question-answering, online advertising and recommendation systems. In all these applications, the necessary first step is to transform an input text into a machine-interpretable representation, namely to “understand” the short text. To achieve this goal, various approaches have been proposed to leverage external knowledge sources as a complement to the inadequate contextual information accompanying short texts. This survey reviews current progress in short text understanding with a focus on the vector based approaches, which aim to derive the vectorial encoding for a short text. We also explore a few potential research topics in the field of short text understanding.
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第2期262-269,共8页 Journal of Computer Research and Development
基金 国家"九七三"基础研究发展计划基金项目(2014CB340403) 中央高校基本科研业务费专项资金(14XNLF05)~~
关键词 知识挖掘 短文本理解 概念化 语义计算 knowledge mining short text understanding conceptualization semantic computing
  • 相关文献

参考文献34

  • 1Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis [J]. Journal of the Association of Information Sience, 1990, 41(6) : 391-407.
  • 2Song Y, Wang H, Wang Z, et al. Short text conceptualization using a probabilistic knowledgebase [C]// Proc of the 22nd Int Joint Conf on Artificial Intelligence (IJCAI). Palo Alto, CA: AAAI, 2011:2330-2336.
  • 3Wang Z, Zhao K, Wang H, et al. Query understanding through knowledge-based conceptualization [C]//Proc of the 24th Int Joint Conf on Artificial Intelligence (IJCAI). Palo Alto, CA: AAAI, 2015:3264-3270.
  • 4Lund K, Burgess C. Producing high-dimensional semantic spaces from lexical co-occurrence[J]. Behavior Research Methods, Instruments,& Computers, 1996, 28(2): 203- 2O8.
  • 5Turney P D, Pantel P. From frequency to meaning: Vector space models of semantics [J]. Journal of Artificial Intelligence Research, 2010, 37(1): 141-188.
  • 6Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model [J]. The Journal of Machine Learning Research, 2003, 3(2): 1137-1155.
  • 7Mikolov T, Karafiat M, Burget L, et al. Recurrent neural network based language model [C] //Proc of the llth Annual Conf of the Int Speech Communication Association. New York: ACM, 2010: 1045-1048.
  • 8Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space [J]. Computing Research Repository, 2013 [2015-12-30]. http://arxiv, org/ pdf/1301. 3781. pdf.
  • 9Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning [C]//Proc of the 25th Int Conf on Machine Learning (ICML). New York: ACM, 2008:160-167.
  • 10Ire Q V, Mikolov T. Distributed representations of sentences and documents [C]//Proc of the 31st Int Conf on Machine Learning(ICML). PaloAlto, CA: AAAI, 2014:1188-1196.

同被引文献212

引证文献50

二级引证文献531

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部