期刊文献+

积分型粘弹性阻尼器耗能结构瞬态响应的精确解 被引量:7

Exact transient response solution of energy dissipation structure with internal viscoelastic damper
下载PDF
导出
摘要 为建立积分型粘弹性阻尼器耗能结构的精确设计方法,对单自由度结构在任意激励和非零初始条件下的时域瞬态响应精确解进行了系统研究。首先采用线性粘弹性阻尼器的一般积分型精确分析模型,用微分积分方程实现了单自由度结构的时域非扩阶精确建模;然后采用传递函数法,直接在耗能结构非扩阶空间上获得了变频耗能结构在任意激励和非零初始条件下位移与速度时域瞬态响应的解析表达式;最后,基于此精确解得到了结构在平稳Kanai-Tajimi谱随机地震激励下响应方差的解析表达式。通过与扩阶复模态法结果的对比分析,验证了所获精确解的正确性和简易性,表明建立了适用于单自由度积分型粘弹性阻尼器耗能结构的优效解析方法。 In order to establish an accurate design method for general linear viscoelastic damping energy dissipation structures,a systematically research on the time domain transient response exact solution of structure that have single degree of freedom was conducted under arbitrary excitation and non-zero initial condition. A general integral accurate analysis model of linear viscoelastic damper was adopted,and a precise non-extended order model in time domain of structure that had SDOF( single degree of freedom) was created by applying the differential-integral equation. The transientdisplacement and velocity response analytical expressions of variable frequency energy dissipation structure in time domain under arbitrary excitation and non-zero initial condition were obtained directly in non-extended order space of energy dissipation structure using the transfer function method.The analytical expression of response variance of structure that met with stationary random seismic excitation of Kanai-Tajimi spectrum was established by applying the exact solution obtained in this paper. It is proved that this exact solution is correct and simple,compared with the consequences obtained by employing the complex model method of extended order,which suggests that an effective analytical solution has been built and the solution is applicable to general linear viscoelastic damping energy dissipation structures of SDOF.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2016年第1期83-90,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(51468005) 广西自然科学基金项目(2014GXNSFAA118315) 广西科技大学创新团队支持计划项目
关键词 传递函数法 一般积分型模型 瞬态响应精确解 随机响应精确解 transfer function method general integral model exact solution of transient response exact solution of random response
  • 相关文献

参考文献17

  • 1李创第,陈欧阳,葛新广,邹万杰.多层隔震结构近似实空间解耦及地震作用取值[J].广西大学学报(自然科学版),2013,38(4):785-794. 被引量:7
  • 2PARK S W. Analytical modeling of viscoelastic dampers for structural and vibration control [ J]. International Journal of Solids and Structures, 2001, 38: 8065-8092.
  • 3李创第,邹万杰,葛新广,李暾.多自由度一般积分型粘弹性阻尼减震结构的随机响应与等效阻尼[J].工程力学,2013,30(4):136-145. 被引量:19
  • 4CHANG K C, LIN Y Y. Seismic response of full-scale structure with added viscoelastic dampers [ J]. Journal of Structural Engineering, 2004, 130(4): 600-608.
  • 5HWANG J S, WANG J C. Seismic response prediction of HDR bearings using fractional derivative Maxwell model [ J ]. Engineering Structures, 1998, 20: 849-856.
  • 6APTILE A, INAUDI J A, KELLY J M. Evolutionary model of viscoelastic dampers for structural applications [ J ]. Journal of Engineering Mechanics, 1997, 123 (6) : 551-560.
  • 7LEWANDOWSKI R, CHORAZYCZEWSKI B. Identification of the parameters of the Kelvin-Voigt and Maxwell fractional models used to modeling of viscoelastic dampers [J]. Computers and Structures, 2010, 88: 1-17.
  • 8ZHANG J, ZHANG G T. The Biot model and its application in viscoelastic composite structures [ J ]. Journal of Vibration and Acoustics, 2007, 129: 533-540.
  • 9TRINDADE M, BENJEDDOU A, OHAYOU R. Modeling of frequency-dependent viscoelatie materials for active-passive vibration damping [J]. Journal of Vibration and Acoustics, 2002, 122: 169-174.
  • 10Tsu-sheng Chang,Mahendra P.Singh.Seismic analysis of structures with a fractional derivative model of viscoelastic dampers[J].Earthquake Engineering and Engineering Vibration,2002,1(2):251-260. 被引量:14

二级参考文献34

共引文献146

同被引文献80

  • 1欧进萍,龙旭.速度相关型耗能减振体系参数影响的复模量分析[J].工程力学,2004,21(4):6-12. 被引量:9
  • 2王烨华,周云,丁鲲.粘弹性阻尼减震结构研究与应用的新进展[J].防灾减灾工程学报,2006,26(1):109-121. 被引量:18
  • 3李创第,黄天立,李暾,邹万杰,方重,林志兴.TMD控制优化设计及振动台试验研究[J].土木工程学报,2006,39(7):19-25. 被引量:36
  • 4廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用:建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社,2003.8.
  • 5CHRISTOPOULOS C,FILLIATRULTA. Principle of passive supplemental damping and seismic isolation[M]. Pavia,Italy:IVSS Press,2006.
  • 6PASK S W. Analytical modeling of viscoelastic dampers for structural and vibration control [J]. International Journal ofSolids and Structures,2001,38:8065-8092.
  • 7CHANG T S, SINGH M P. Mechanical model parameter for viscoelastic dampers[J]. Journal of Engineering Mechanics,2009, 135(6) :581-584.
  • 8YAMADA K. Dynamic characteristics of SDOF structure with Maxwell element [J]. Journal of Engineering Mechanics,2008, 134(5):39604.
  • 9PALMERI A, RICCIARDELLI F. State space formulation for linear viscoelastic system with memory[J]. Journal of EngineeringMechanics,2003,129(7) :715-724.
  • 10SINGH M P, VERMA N P. Seismic analysis and design with Maxwell dampers[J]. Journal of Engineering Mechanics,2003,129(3) :273-282.

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部