期刊文献+

微博信息传播预测研究综述 被引量:42

Survey on Predicting Information Propagation in Microblogs
下载PDF
导出
摘要 微博已经逐渐成为人们获取信息、分享信息的重要社会媒体,深刻影响并改变了信息的传播方式.针对微博信息传播预测问题展开综述.该研究对舆情监控、微博营销、个性化推荐具有重要意义.首先概述微博信息传播过程,通过介绍微博信息传播的定性研究工作,揭示微博信息传播的特点;接着,从以信息为中心、以用户为中心以及以信息和用户为中心这3个角度介绍微博信息传播预测相关研究工作,对应的主要研究任务分别是微博信息流行度预测、用户传播行为预测和微博信息传播路径预测;继而介绍可用于微博信息传播预测研究的公开数据资源;最后,展望微博信息传播预测研究的问题与挑战. Microblogs have gradually become popular platforms for users to acquire and share information with the public, which have brought a profound impact on information propagation. This paper presents a survey of predicting information propagation in microblogs. It is important to public opinion monitoring, online marketing and personalized recommendation. The paper first introduces the mechanism of information propagation, and reveals the characteristics of information propagation in microblogs through a brief overview of the qualitative research. Then, representative work is reviewed for the prediction of information propagation from three aspects including information centered prediction, user centered prediction and information-user centered prediction. The three corresponding tasks are predicting the popularity of information, predicting individual spread behaviors and predicting the path of information dissemination respectively. Next, the publicly available data sets for information propagation in microblogs are summarized. Finally, the key challenges are discussed to suggest the future research directions.
出处 《软件学报》 EI CSCD 北大核心 2016年第2期247-263,共17页 Journal of Software
基金 国家重点基础研究发展计划(973)(2014CB340503) 国家自然科学基金(61472107 61202277)~~
关键词 微博 信息传播预测 信息流行度 传播行为 信息传播路径 microblog prediction of information propagation popularity of information spread behavior path of information dissemination
  • 相关文献

参考文献8

二级参考文献153

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:73
  • 2Sudbury J.The Proportion of the Population Never Hearing a Rumour[J].Appl.Prob.,1985,22(11):443-446.
  • 3Zhou Re,Liu Zonghua,Li Baowen.Influence of Network Structure on Rumor Propagation[J].Physics Letters A,2007,368(11):458-463.
  • 4Zhao Hui,Gao Ziyou.Modular Effects on Epidemic Dynamics in Small-world Networks[J].Europhysics Letters,2007,79(3):380-382.
  • 5Ferrer R,Sole R V.Optimization in Complex Networks[J].Lect.Notes Phys,2003,25(6):114-125.
  • 6AOL Inc. Analyst: Twitter passed 500M users in June 2012, 140M of thern in US; Jakarta 'Biggest Tweeting' eity[EB/OL]. (2012-07-30) [2012-10]. http://techcrunch.com/2012/07/30/ analyst-twiter-passed-500m-users-in-june-2012-140m-of- them-in-us-j akarta-biggest-tweeting-city/.
  • 7Li Cong, van de Bovenkamp R, van Mieghem R Susceptible- infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations[J]. Physical Review E, 2012, 86: 026116.
  • 8Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86 (14): 3200-3203.
  • 9Watts D J, Strogatz S H. Collective dynamics of ' small-world' networks[J]. Nature, 1988, 393: 440-442.
  • 10Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review E, 2001, 63: 066117.

共引文献363

同被引文献302

引证文献42

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部