期刊文献+

Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer
原文传递
导出
摘要 We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion With low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size. We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion With low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期145-149,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11234004 and 61275126)
关键词 velocity map imaging interaction size RESOLUTION velocity map imaging, interaction size, resolution
  • 相关文献

参考文献37

  • 1Zhang N, Bao W X, Yang J H and Zhu X N 2013 Chin. Phys. B 22 054209.
  • 2He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B and Lu P X 2015 Phys. Rev. A 91 023428.
  • 3Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X and Sun J Z 2007 Chin. Phys. Lett. 24 1537.
  • 4Lan P F, Takahashi E J and Midorikawa K 2012 Phys. Rev. A 86 013418.
  • 5Huang C, Lan P F, Zhou Y M, Zhang Q B, Liu K L and Lu P X 2014 Phys. Rev. A 90 043420.
  • 6Jia Z M, Zeng Z N, Li R X, Xu Z Z and Deng Y P 2015 Chin. Phys. B 24 013204.
  • 7Korneev P A, Popruzhenko S V, Goreslavski S P, Yan T M, Bauer D, Becker W, Kübel M, Kling M F, Rodel C, Wü$nsche M and Paulus G G 2012 Phys. Rev. Lett. 108 223601.
  • 8Zhou Y M, Huang C, Liao Q and Lu P X 2012 Phys. Rev. Lett. 109 053004.
  • 9Tong A H, Zhou Y M and Lu P X 2015 Opt. Express 23 15774.
  • 10Posthumus J H 2004 Rep. Prog. Phys. 67 623.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部