摘要
Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance.
Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance.