期刊文献+

基于模糊聚类的脑磁共振图像分割算法综述 被引量:18

Fuzzy Clustering for Brain MR Image Segmentation
下载PDF
导出
摘要 磁共振成像(Magnetic resonance imaging,MRI)技术以其非介入、无损伤以及不受目标运动影响等特点,已成为临床诊断的重要辅助手段。精确的脑MR图像分割对生物医学研究和临床应用具有重要的指导意义。在实际应用中,脑MR图像中存在的噪声、灰度不均匀性、部分容积效应和低对比度等缺陷,都给脑MR图像的精确分割带来了巨大困难和挑战。本文基于模糊聚类模型的脑MR图像分割问题,从聚类类别数的确定、模型初始化、克服噪声、估计偏移场、克服部分容积效应、数据不确定性描述以及模型扩展7个方面深入阐述了国内外发展现状、应对技巧及改进策略,并分析存在的不足,指出进一步的研究方向。 Magnetic resonance imaging (MRI) has several advantages over other medical imaging modali- ties, including high contrast among different soft tissues, relatively high spatial resolution across the entire field of view and multi-spectral characteristics. Hence, it has been widely used in quantitative brain imaging studies. Quantitative volumetric measurement and three-dimensional visualization of brain tissues are helpful for pathological evolution analyses, where image segmentation plays an important role. However, MR images suffer from several major artifacts, including intensity inhomogeneity, noise, par tial volume effect and low contrast, which makes MR segmentation remain a challenging topic. Therefore, this paper reviews brain MR image segmentation based on fuzzy clustering model from seven aspects, i. e. , the determination of cluster number, the initialization of model, the robustness to noise, the estimation of intensity inhomogeneity and partial volume, the uncertainty description of data and the model extension. Limitations existing in the available methods are analyzed, and problems in further research are discussed as well.
出处 《数据采集与处理》 CSCD 北大核心 2016年第1期28-42,共15页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61401209)资助项目 江苏省自然科学基金青年基金(BK20140790)资助项目 中国博士后科学基金(2014T70525 2013M531364)资助项目
关键词 脑磁共振成像 图像分割 模糊聚类 空间信息 灰度不均匀性 部分容积效应 brain magnetic resonance imaging(MRI) image segmentation fuzzy clustering spatial information intensity inhomogeneity partial volume effect
  • 相关文献

参考文献134

  • 1何小海,梁子飞,唐晓颖,滕奇志.图谱法脑部MRI图像自动分割技术发展及应用[J].数据采集与处理,2015,30(5):956-964. 被引量:8
  • 2Huseyin T, Kimia B. Volumetric segmentation of medical images by three dimensional bubbles [J]. Computer Vision and Image Understanding, 1997, 65(2): 246-258.
  • 3Chakraborty A, Staib H, Duncan S. Deformable boundary finding in medical images by integrating gradient and region infor- mation [J]. IEEE Transactions on Medical Image, 1996, 15(6) : 859-870.
  • 4Johnston B, Atkins M, Mackiewich B. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI [J]. IEEE Transactions on Medical Image, 1996, 15(2) 154-169.
  • 5Mackiewich B. Intracranial boundary diction and radio frequency correction in magnetic resonance images [D]. Burnaby, B. C, Canada: Simon Fraster Univ. , 1995.
  • 6Rogowska J. Handbook of medical imaging processing and analysis[M]. New York:Academic Press, 2000: 69-86.
  • 7Ginneken B, Alejandro F F, Joes J. Active shape model segmentation with optimal features [J]. IEEE Transactions on Med- ical Imaging, 2002, 21(8): 924-933.
  • 8Pham L, Xu C Y, Prince I: A survey of current methods in medical image segmentation [J]. Annual Review of Biomedical Engineering, 2000,2: 315-317.
  • 9Paragios N, Deriche R. Geodesic active regions and level set methods for supervised texture segmentation [J]. International Journal of Computer Vision, 2002, 46(3): 223-247.
  • 10Aloise D, Deshpande A, Hansen P. NP-hardness of Euclidean sum-of-squares clustering [J]. Machine Learning, 2009, 2 (75) : 245-248.

二级参考文献56

  • 1周显国,陈大可,苑森淼.基于改进模糊聚类分析的医学脑部MRI图像分割[J].吉林大学学报(工学版),2009,39(S2):381-385. 被引量:7
  • 2蔡隽,鲍旭东,吴磊,罗立民.基于活动轮廓模型的彩色白细胞图像自动分割方法研究[J].生物医学工程研究,2005,24(4):218-222. 被引量:3
  • 3刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 4李云松,李明.基于灰度空间特征的模糊C均值聚类图像分割[J].计算机工程与设计,2007,28(6):1358-1360. 被引量:27
  • 5冈萨雷斯.数字图像处理(MATLAB版)[M].阮秋琦,译.北京:电子工业出版社,2008,144-160.
  • 6Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated cluster[J].Journal of Cybernetics and Systems, 1973, 3(3):32-57.
  • 7Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981.
  • 8Pham D L, Prince J L. Adaptive fuzzy segmentation of magnetic resonance images [J]. IEEE Transactions on Medical Imaging, 1999, 18(9): 737-752.
  • 9Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
  • 10Chen S, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transactions on System Man and Cybernetics-Part B, 2004, 34(4) : 1907-1916.

共引文献86

同被引文献112

引证文献18

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部