期刊文献+

复杂环境下基于角点回归的全卷积神经网络的车牌定位 被引量:11

Learning Corner Regression-based Fully Convolutional Neural Network for License Plate Localization in Complex Scene
下载PDF
导出
摘要 车牌定位是车牌识别系统中核心部分,具有较高的研究和应用价值。尽管近些年来该研究取得了很大的进展,但仍无法很好地解决低亮度、低分辨率和车辆倾斜等环境下的定位问题。本文提出了一种新的全卷积神经网络,通过回归车牌角点的方式准确地进行车牌定位。为了保证训练的有效性,对45 000幅含有车牌的图像进行人工标注。同时,对标注的图像随机进行平移、缩放、旋转和加噪,提高训练样本的数量和多样性。在本文构建的卡口图像数据集和复杂环境数据集上与两种方法进行了比较,验证了本文方法的有效性。 License plate localization, the core component of license plate recognition system, is valuable in both academic development and potential applications. Though much progress has been made in recent years, challenging problems still exist in the complex scenes, such as low luminance, low resolution and inclination scence of vehicle. This paper proposes a novel fully convolutional neural network to localize license plates accurately by a corner regression algorithm. To guarantee effective training in the proposed model, 45 000 sample images are annotated by one person. Meanwhile, the annotated sample images are processed by four operators, including translating, scaling, rotating and noising, to increase the number and diversity of the training samples. Extensive experiments on the newly collected datasets, traffic monitoring dataset and the complex scene dataset, demonstrate the effectiveness of the proposed method against other two license plate localization methods.
出处 《数据采集与处理》 CSCD 北大核心 2016年第1期65-72,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61472002 61502003)资助项目 安徽省自然科学基金面上(1308085MF97 1508085QF127)资助项目
关键词 卷积神经网络 车牌定位 深度学习 角点回归 复杂环境 convolutional neural network license plate localization deep learning corner regression complex scene
  • 相关文献

参考文献14

  • 1邓彩霞,王贵彬,杨鑫蕊.改进的抗噪形态学边缘检测算法[J].数据采集与处理,2013,28(6):739-745. 被引量:26
  • 2李国东,王雪,赵国敏.基于五阶CNN的图像边检测算法研究[J].安徽大学学报(自然科学版),2015,39(3):15-21. 被引量:5
  • 3Yao Z, Yi W. License plate detection based on multistage information fusion[J]. Information Fusion, 2014,18:78-85.
  • 4范春梅.车牌定位技术介绍与分析[J].信息技术,2013,37(11):167-168. 被引量:4
  • 5Sermanet P, Eigen D, Zhang X, et al. Overfeat: Integrated recognition, localization and detection using convolutional net- works[J], arXiv Preprint arXiv 1312. 6229,2013.
  • 6Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. Columbus IEEE, 2014: 1717-1724.
  • 7Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[J], ePrint arXiv:1409. 4842, 2014:1-9.
  • 8Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Lake Tahoe NIPS,20121097-1105.
  • 9杨阳,张文生.基于深度学习的图像自动标注算法[J].数据采集与处理,2015,30(1):88-98. 被引量:26
  • 10王文豪,高尚兵,周静波,严云洋.图像中椒盐噪声去除算法研究[J].数据采集与处理,2015,30(5):1091-1098. 被引量:5

二级参考文献101

共引文献64

同被引文献88

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部