摘要
该文研究了一类具振动循环损失率的造血模型,运用指数二分法理论、压缩映射不动点定理和微分不等式技巧,获得了该模型正伪概周期解存在性和指数稳定性的充分条件,并用数值模拟验证了所得的理论结果.结论改进和推广了已有文献的相应结果.
In this paper, a model of hematopoiesis with an oscillating circulation loss rate is investigated. By applying the exponential dichotomy theory, contraction mapping fixed point theorem and differential inequality techniques, a set of sufficient conditions are obtained for the existence and exponential stability of positive pseudo almost periodic solutions of the model. Some numerical simulations are carried out to support the theoretical findings. Our results improve and generalize those of the previous studies.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2016年第1期80-89,共10页
Acta Mathematica Scientia
基金
湖南文理学院重点建设学科(应用数学)资助~~
关键词
正伪概周期解
全局指数稳定
造血模型
震动循环损失率
Positive pseudo almost periodic solution
Global exponential stability
Model of hematopoiesis
Oscillating circulation loss rate.