期刊文献+

DT-CWT相关滤波在齿轮箱故障诊断中的应用 被引量:10

DT-CWT Domain Correlation Filter and Its Application in Incipient Gearbox Fault Diagnosis
下载PDF
导出
摘要 根据小波系数的相关分析理论,提出了基于双树复小波变换的小波相关滤波法。该方法根据相邻层小波系数的相关性,通过迭代过程自适应地进行滤波,能够在达到良好降噪效果的同时保留微弱故障特征信息。对降噪后的信号进行希尔伯特包络分析便可准确得到故障特征频率。试验信号分析与工程应用结果表明,该方法能够有效提取强背景噪声下的齿轮箱轴承早期故障特征信息。 The conventional wavelet denoising method based on the simple threshold principle cannot always successfully extract the weak fault feature from the vibration signal with strong background noise,as the noise of different layers is individually estimated.Inspired by the fact that the wavelet transform coefficients of adjacent layers have some similarities where the signal is singular,a new method based on dualtree complex wavelet transform and correlation filter is proposed.The method is an interactive process in which its parameters are adaptively selected and the noise can be efficiently reduced.More important,the faint component that is expected to be extracted will be retained.The defect frequency can be accurately found by the envelope demodulation analysis.As an improvement to the conventional wavelet transform domain correlation filter,it takes full advantage of dual-tree complex wavelet transform.Experimental and engineering application examples show the method′s effectiveness in incipient gearbox fault diagnosis.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2016年第1期138-144,203,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51375020) 北京市教委科研计划资助项目(KM201310005013) 北京市属高等学校青年拔尖人才培育计划 先进制造技术北京市重点实验室开放基金 北京工业大学基础研究基金资助项目(X4001011201301)
关键词 双树复小波变换 相关滤波 降噪 齿轮箱 早期故障诊断 dual-tree complex wavelet transform correlation filtering denoising gearbox incipient fault diagnosis
  • 相关文献

参考文献14

  • 1丁康,朱小勇,陈亚华.齿轮箱典型故障振动特征与诊断策略[J].振动与冲击,2001,20(3):7-12. 被引量:102
  • 2Yu Shigong, Ahmad M O, Swarny M N S. Video de noising using motion compensated 3-d wavelet trans- form with integrated recursive temporal filtering[J]. Circuits and Systems for Video Technology, 2010, 20 (6) : 780-791.
  • 3Wang Zhizhong, Yong Junhai. Texture analysis and classification with linear regression model based on wavelet transform [J]. Image Processing, 2008, 17 (8) : 1421- 1430.
  • 4Bouzida A, Touhami O, Ibtiouen R, et al. Fault diag- nosis in industrial induction machines through discrete wavelet transform [J]. Industrial Electronics, 2011, 58(9): 4385-4395.
  • 5Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelet transform[J]. IEEE Digital Signal Processing Magazine, 2005, 22(6): 123-151.
  • 6Snekhalatha U, Anburajan M. Dual tree wavelet transform based watershed algorithm for image seg- mentation in hand radiographs of arthritis patients and- classification using BPN neural network[C]//Informa tion and Communication Technologies ( WICT ). Trivandrum: 2012 World Congress on IEEE, 2012: 448-452.
  • 7王芳,季忠,彭承琳.基于双树复小波变换的心电信号去噪研究[J].仪器仪表学报,2013,34(5):1160-1166. 被引量:43
  • 8Seshadrinath J, Singh B, Panigrahi B K. Vibration a nalysis based interturn fault diagnosis in induction ma chines[J]. Industrial Informatics, 2014, 10(1): 340 -350.
  • 9胥永刚,孟志鹏,陆明,付胜.基于双树复小波和奇异差分谱的齿轮故障诊断研究[J].振动与冲击,2014,33(1):11-16. 被引量:13
  • 10邱爱中.对偶树复小波阈值降噪法及在机械故障诊断中的应用[J].机械传动,2011,35(9):58-61. 被引量:5

二级参考文献58

共引文献255

同被引文献92

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部