期刊文献+

基于压缩传感的量子状态估计算法的性能对比分析 被引量:4

Comparative Analysis of Quantum State Estimation Algorithm Based on Compressive Sensing
下载PDF
导出
摘要 在已完成5个量子位的密度矩阵估计基础上,采用基于压缩传感的交替方向乘子算法(ADMM),对6个量子位的量子态密度矩阵进行估计研究.并进一步分别针对无外部干扰及存在干扰情况下,与最小二乘法、Dantzig优化算法进行性能对比研究,在Matlab环境下设计量子估计的优化方案,实现快速的量子纯态的估计.实验表明ADMM在抵抗外部扰动及估计精度上的优越性. The alternating direction method of multipliers (ADMM) is used to estimate quantum density matrix with 6 qubits based on the completed research on 5 qubits estimation. In addition, the comparison with least squares and Dantzig optimization method is studied under the situations with and without external interference. The optimization schemes are implemented in Matlab environment to realize the fast estimation of quantum pure state. The experimental results show that ADMM is superior to two other algorithms in estimation accuracy and resistance to external disturbances.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第2期116-121,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61573330)资助~~
关键词 量子态估计 压缩传感 交替方向乘子算法 Quantum State Estimation, Compressive Sensing, Alternating Direction Method of Multipliers
  • 相关文献

参考文献19

  • 1DONOHO D L. Compressed Sensing. IEEE Trans on Information Theory, 2006, 52(4) : 1289-1306.
  • 2HEINOSAARI T, MAZZARELLA L, WOLF M M. Quantum Tomo- graphy under Prior Information. Communications in Mathematical Physics, 2013, 318(2) : 355-374.
  • 3GROSS D, LIU Y K, FLAMMIA S T, et al. Quantum State Tomo- graphy via Compressed Sensing. Physical Review Letters, 2010, 105(15). DOI: 10. ll03/PhysRevLett. 105. 150401.
  • 4LIU W T, ZHANG T, LIU J Y, et al. Experimental Quantum State Tomography via Compressed Sampling. Physical Review Letters, 2012, 108 (17). DOI : 10.1103/PhysRevLett. 108. 170403.
  • 5BALDWIN C, KALEV A, DEUTSCH I. Quantum Process Estima- tion via Compressed Sensing with Convex Optimization [ EB/OL ]. [2014-6- 30 ]. http ://absimage. aps. org/image/MAR14/MWS_ MAR14-2013-005989. pdf.
  • 6BANASZEK K, CRAMER M, GROSS D. Focus on Quantum Tomo- ga'aphy. New Journal of Physics, 2013, 15 (12). DOI: 10. 1088/ 1367 -2630/15/12/125020.
  • 7JELONEK J, KRAWIEC K, SLOWII~SKI R. Rough Set Reduction of Attributes and Their Domains for Neural Networks. Computational Intelligence, 1995, 11 (2) : 339-347.
  • 8丛爽,匡森.量子系统中状态估计方法的综述[J].控制与决策,2008,23(2):121-126. 被引量:3
  • 9丛爽.基于李雅普诺夫量子系统控制方法的状态调控[J].控制理论与应用,2012,29(3):273-281. 被引量:7
  • 10FLAMMIA S T, GROSS D, LIU Y K, et al. Quantum Tomographyvia Compressed Sensing : Error Bounds, Sample Complexity, and Efficient Estimators. New Journal of Physics, 2012, 14(9). DOI: 10.1088/1367-2630/14/9/095022.

二级参考文献45

  • 1CONG Shuang,KUANG Sen.Quantum Control Strategy Based on State Distance[J].自动化学报,2007,33(1):28-31. 被引量:10
  • 2Von Neumann J. Mathematical foundations of quantum mechanics[M]. Princeton: Princeton University Press, 1955.
  • 3Yuen H P. Amplification of quantum states and noiseless photon amplifiers[J]. Physics Lettes A, 1986, 113: 405-407.
  • 4D'Ariano G M, Paris M G A, Sacchi M F. Quantum tomographic methods [J]. Lecture Notes in Physics, 2004, 649:7-58.
  • 5D'Alessandro D. On quantum state observability and measurement[J]. J Physics A, 2003, 36: 9721-9735.
  • 6Silberfarb A, Jessen P S, Deutsch I H. Quantum state reconstruction via continuous mcasurement[J]. Physical Review Letters, 2005, 95: 30402.
  • 7Gambetta J, Wiseman H M. State and dynamical parameter estimation for open quantum systems [J]. Physical Review A, 2001, 64: 042105.
  • 8Buzek V, Drobny G, Adam G. Knight reconstruction of quantum states of spin systems via the jaynes principle of maximum entropy [J]. J of Modern Optics, 1997, 44 : 2607-2627.
  • 9Baier Th, Hangos K M, Magyar A, et al. Comparison of some methods of quantum state estimation[EB/OL]. http://arviv. org/abs/arXiv: quant-ph/0511263, 2005-11-29.
  • 10Buzek V. Quantum tomography from incomplete data via maxEnt principle[J]. Lecture Notes in Physics, 2004, 649: 189-234.

共引文献8

同被引文献10

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部