期刊文献+

基于模糊神经网络的出水总磷软测量方法研究 被引量:3

Effluent total phosphorus detecting method and its application based on soft-sensor and FNN techniques
原文传递
导出
摘要 在污水处理过程中,出水总磷(Total Phosphorus,TP)是衡量污水处理效果的关键参数之一。本文针对目前出水TP难以实时测量的问题,提出了一种基于模糊神经网络(FNN)的出水TP软测量方法。该软测量方法通过实际运行数据,利用偏最小二乘法(Partial Least Squares,PLS)筛选出与出水TP相关性强的过程变量;同时,利用FNN建立了出水TP与相关性变量之间的软测量模型,并将该方法嵌入到污水处理运行系统。实验结果显示该软测量方法能够实现出水TP的实时预测,并且具有较好的预测精度。 Total Phosphorus (TP) is a key parameter to evaluate the performance of a wastewater treatment plant (WWTP). A soft-sensor monitoring method modelling by fuzzy neural network (FNN) was proposed in this paper to solve the problem of time-delay in TP measurement. To ensure accuracy and computing efficiency of soft-sensor model, the data used in this paper was obtained from a WWTP in China and Partial Least Squares (PLS) technique was utilized to suppress the irrelevant process variables with effluent TP. The soft-sensor system was embedded in wastewater treatment process and tested with satisfactory results.
出处 《计算机与应用化学》 CAS 2016年第2期223-227,共5页 Computers and Applied Chemistry
基金 国家自然科学基金(61203099 61225016) 北京市科技计划课题(Z141100001414005 Z141101004414058) 中国博士后科学基金资助项目(2014M550017 XJ2013018) 北京市科技新星计划(Z131104000413007) 教育部博士点基金项目(20121103120020 20131103110016) 北京市教委项目(km201410005001 KZ201410005002) 北京市朝阳区博士后资助项目(2014ZZ-05) 北京市朝阳区协同创新项目(ZH14000177)
关键词 污水处理 出水TP 偏最小二乘法 神经网络 软测量技术 wastewater treatment process total phosphorus measurement PLS FNN soft-sensor technique
  • 相关文献

参考文献29

  • 1Strokal M, He Y and Zhang Y C. Increasing eutrophication in the coastal seas of China from 1970 to 2050[J]. Marine Pollution Bulletin, 2014, 85(1): 123-140.
  • 2Chang N N, Shiaoa J C and Gong G C. Diversity of demersal fish in the east China sea: implication of eutrophication and fishery[J]. Continental Shelf Research, 2012, 47(1):42-54.
  • 3Hu J F, Zhang G and Li K C. Increased eutrophication offshore Hong Kong, China during the past 75 years: evidence from high-resolution sedimentary records[J]. Marine Chemistry, 2008, 110(1-2):7-17.
  • 4Rémi D, Magalie D and Dorioz J M. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk[J]. Ecological Indicators, 2015, 48(1):396-407.
  • 5Bucholc K, Szymczak-Zyla M and Lubecki L. Nutrient content in Macrophyta collected from southern Baltic sea beaches in relation to eutrophication and biogas production[J]. Science of the Total Environment, 2014, 473-474:298-307.
  • 6Nyenje P M, Foppena J W and Uhlenbrook S. Eutrophication and nutrient release in urban areas of sub-Saharan africa-a review[J]. Science of the Total Environment, 2010, 408(3):337-455.
  • 7Olsson G. Instrumentation, control and automation in the water industry: state-of-the-art and new challenges CD[J]. Water Science and Technology, 2006, 53(4-5):1-16.
  • 8Jin L Y, Zhang G M and Tian H F. Current state of sewagetreatment in China[J]. Water Research, 2014, 66(1):85-98.
  • 9Zhang Y, Thepsithar P and Jiang X. Direct determination of phosphate in raw Jatropha Curcas oil by ion chromatography[J]. Industrial Crops and Products, 2013, 44(1):459-464.
  • 10Olsson G. ICA and me - a subjective review[J]. Water Research, 2012, 46(6):1585-1624.

二级参考文献34

共引文献67

同被引文献20

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部