摘要
在污水处理过程中,出水总磷(Total Phosphorus,TP)是衡量污水处理效果的关键参数之一。本文针对目前出水TP难以实时测量的问题,提出了一种基于模糊神经网络(FNN)的出水TP软测量方法。该软测量方法通过实际运行数据,利用偏最小二乘法(Partial Least Squares,PLS)筛选出与出水TP相关性强的过程变量;同时,利用FNN建立了出水TP与相关性变量之间的软测量模型,并将该方法嵌入到污水处理运行系统。实验结果显示该软测量方法能够实现出水TP的实时预测,并且具有较好的预测精度。
Total Phosphorus (TP) is a key parameter to evaluate the performance of a wastewater treatment plant (WWTP). A soft-sensor monitoring method modelling by fuzzy neural network (FNN) was proposed in this paper to solve the problem of time-delay in TP measurement. To ensure accuracy and computing efficiency of soft-sensor model, the data used in this paper was obtained from a WWTP in China and Partial Least Squares (PLS) technique was utilized to suppress the irrelevant process variables with effluent TP. The soft-sensor system was embedded in wastewater treatment process and tested with satisfactory results.
出处
《计算机与应用化学》
CAS
2016年第2期223-227,共5页
Computers and Applied Chemistry
基金
国家自然科学基金(61203099
61225016)
北京市科技计划课题(Z141100001414005
Z141101004414058)
中国博士后科学基金资助项目(2014M550017
XJ2013018)
北京市科技新星计划(Z131104000413007)
教育部博士点基金项目(20121103120020
20131103110016)
北京市教委项目(km201410005001
KZ201410005002)
北京市朝阳区博士后资助项目(2014ZZ-05)
北京市朝阳区协同创新项目(ZH14000177)
关键词
污水处理
出水TP
偏最小二乘法
神经网络
软测量技术
wastewater treatment process
total phosphorus measurement
PLS
FNN
soft-sensor technique