期刊文献+

基于差分演化的复杂网络社区挖掘算法研究 被引量:2

Research on community detection based on differential evolution algorithm
下载PDF
导出
摘要 社区结构的挖掘问题已经成为复杂网络中重要的研究方向,其挖掘算法是关键的核心问题.为了提高对社区结构进行挖掘的准确度,提出一种基于差分演化思想的复杂网络社区挖掘算法(Differential Evolution Community Detection Algorithm,DECD).DECD算法设计了一种新的编码方式,以模块密度函数作为优化目标,通过差分演化算法对复杂网络实施有效划分.实验结果表明,新的编码方式提高了编码速度并解决了社区重复编码问题,同时DECD算法能够提高复杂网络中的社区结构挖掘的准确度. Community detection has been an important research direction of the structure of complex network, whose mining algorithm is a crucial core issue. To improve the accuracy of community detection, a community detection algorithm based on the theory of differential evolution for complex network (Differential Evolution Community Detection Algorithm, DECD) is presented. In the study, the algorithm proposed a creative encoding mode and chose the modularity density function as the optimization objective for differential evolution algorithm to detect the structure of complex networks. Experimental results demonstrate that not only the encoding speed is optimized and the repetition encoding problems is solved by the creative encoding mode, but also the accuracy of community detection in complex networks is improved by DECD algorithm.
出处 《江西理工大学学报》 CAS 2016年第1期95-101,共7页 Journal of Jiangxi University of Science and Technology
基金 国家自然科学基金资助项目(61462036)
关键词 社会网络 社区挖掘 差分演化 编码方式 social network community detection differential evolution encoding
  • 相关文献

参考文献20

二级参考文献198

  • 1Duncan J Watts,Steven H Strogatz.Collective dynamics of "smallworld" networks[J].Nature,1998(393):440-442.
  • 2Albert-László Barabási and Réka Albert.Emergence of scaling in random networks[J].Science,1999,286 (5439):509-512.
  • 3Jon Kleinberg,Steve Lawrence.Network analysis,The structure of the web[J].Science,2001,294(5548):1849-1850.
  • 4Wang X F,Chen G R.Complex networks:small-world,scale-free and beyond[J].IEEE circuits and systems magazine,2003,3(1):6-20.
  • 5Naoki Masuda, Norio Konno. Transmission of severe acute respiratory syndrome in dynamical small-world Networks[J].Phys Rev E,2004(69):31917-31923.
  • 6L A N Amaral,A Scala,M Barthe'le'my and H E Stanley.Classes of small-world networks[C].Proc Natl Acad Sci,2000(97):11149-11152.
  • 7M E J Newman.Scientific collaboration networks.Ⅱ.Shortest paths,weighted networks,and centrality[J].Phys Rev E,2001(64):16132-16139.
  • 8S N Dorogovtsev,J F F Mendes.Effect of the Accelerating Growth of Communications Networks on their Structure[J].Phys Rev E,2001(63):25101 (R)-25104(R).
  • 9Réka Albert and Albert-László Barabási.Topology of evolving networks:local events and universality[J].Phys Rev Lett,2000(85):5234-5237.
  • 10P L Krapivsky,S Redner,F Leyvraz.Connectivity of growing random networks[J].Phys Rev Lett,2000(85):4629-4632.

共引文献161

同被引文献36

  • 1田春岐,邹仕洪,田慧蓉,王文东,程时端.一种基于信誉和风险评价的分布式P2P信任模型[J].电子与信息学报,2007,29(7):1628-1632. 被引量:47
  • 2Newman M. Detecting community structure innetworks [J]. European Physical Journal B, 2004, 38(2):321-330.
  • 3Takaffoli M. Community evolution in dynamic social networks-- challenges and problems [C]//Data Mining Workshops (ICDMW), 2011 IEEE llth International Conference on. IEEE, 2011: 1211- 1214.
  • 4Giatsoglou M, Vakali A. Capturing social data evolution using graph clustering[J]. IEEE Internet Computing, 2013, 17(1): 74-79.
  • 5Cuzzocrea A, Folino F, Pizzuti C. DynamicNet: an effective and efficient algorithm for supporting community evolution detection in time-evolving information networks [C]//Proceedings of the 17th International Database Engineering & Applications Symposium. ACM, 2013: 148-153.
  • 6l'akaffoli M, Sangi F, Fagnan J, et al. Community evolution mining in aynamic social networks [J]. Procedia-Social and Behavioral Sciences, 2011, 22: 49-58.
  • 7Nguyen N P, Dinh T N, Xuan Y, et al. Adaptive algorithms for detecting community structure in dynamic social networks [C]// INFOCOM, 2011 Proceedings IEEE. IEEE, 2011: 2282-2290.
  • 8Mucha P J, Richardson T, Macon K, et al. Community structure in time-dependent, mnltiseale, and multiplex networks [J]. Science, 2010, 328(5980): 876-878.
  • 9Bassett D S, Porter M A, Wymbs N F, et al. Robust detection of dynamic community structure in networks [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2013, 23 (1): 013142.
  • 10Chan J, Liu W, Leckie C, et al. ScqiBloc: mining multi-time spanning blockmodels in dynamic graphs [C]//Proceedings of the 18th ACM SIGKI)D international conference on Knowledge discovery and data mining. ACM, 2012: 651-659.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部