期刊文献+

基于粒子群优化BP神经网络的水产养殖水温及pH预测模型 被引量:19

Prediction model of aquaculture water temperature and pH based on BP neural network optimized by particle swarm algorithm
下载PDF
导出
摘要 针对养殖水质、水温及p H预测准确性低的问题,提出了一种基于粒子群优化BP神经网络的养殖水质参数预测方法。首先应用粒子群算法优化得出BP神经网络的初始权值和阈值,然后对得到的数据进行预处理,修复异常数据信息,再以当前时间的多个水质参数作为输入,下个时间点的水温、p H作为输出,建立养殖水质预测模型,最后利用采集的水质数据在BP神经网络中进行训练,并通过实验检验水质预测模型的可行性和预测性能。与支持向量回归(SVR)和传统BP神经网络相比,基于粒子群优化的BP神经网络在预测水温方面,均方根误差(RMSE)下降幅度分别为64.4%和86.7%;在预测p H方面,RMSE下降幅度分别为11.1%和78.9%。研究表明,基于粒子群优化的BP神经网络养殖水质预测模型具有灵活简便、预测精度高、易于实现的特点,同时具有很好的预测能力。 Focused on the problem of inaccurate aquaculture water temperature and p H prediction,a mixed algorithm for water quality parameters prediction which was based on particle swarm optimization BP neural network( PSO-BPNN) was proposed. Firstly,the particle swarm optimization( PSO) algorithm was applied in calculating the initial weights and thresholds of BP neural network( BPNN). Secondly,the abnormal data were fixed andthe six parameters of water quality as inputs were used,the temperature and p H value of the next time point were used as outputs to establish aquaculture water quality prediction model. Finally,the collected water quality data were used to conduct training in BP neural network,and the feasibility and performance of water quality prediction model was tested through experiments. Compared with support vector regression( SVR) and normal BP neural network,in the aspect of predicting water temperature using PSO-BPNN,the decreasing amplitudes of RMSE were 64% and 80% respectively,while in the aspect of predicting p H value,the decreasing amplitudes of RMSE were 32% and 65% respectively. The results of experiments show that aquaculture water quality prediction model based on PSO-BPNN is flexible,simple,convenient and it also has a good capacity of prediction.
出处 《渔业现代化》 北大核心 2016年第1期24-29,共6页 Fishery Modernization
基金 国家863计划项目(2012AA101905-02) 北京市自然科学基金资助项目(6152009) 国家现代农业产业技术体系建设专项(CARS-49-03A)
关键词 粒子群算法 BP神经网络 水产养殖 渔情预警 水质预测模型 particle swarm optimization(PSO) BP neural network(BPNN) aquaculture fishing condition warning water quality prediction model
  • 相关文献

参考文献16

二级参考文献225

共引文献467

同被引文献359

引证文献19

二级引证文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部