期刊文献+

基于多特征组合的球形果蔬智能分选方法 被引量:3

Intelligent sorting method for spherical fruits and vegetables based on combined characteristics
下载PDF
导出
摘要 为提高球形果蔬分选效率以及降低分选成本,提出了一种在机器视觉技术下球形果蔬多特征组合的智能分选方法。针对单一特征刻画图像特征不全面的问题,建立了颜色矩、Zernike矩、灰度共生矩阵三种特征的组合特征模型,用以确定果蔬的综合特征。Zernike矩在计算前进行了基于H分量阈值二值化图像边缘提取。利用BP神经网络和支持向量机构造分类器,分别对实验样本进行分选。通过仿真实验,验证了多特征组合算法的可行性和有效性,对比分析了BP神经网络和支持向量机分类器对分选效果的影响,分选率均达到了95%以上。 To improve the efficiency of the spherical fruits and vegetables' sorting and reduce the cost of sorting, a new spherical fruits and vegetables' sorting method based on multiple feature combination under the machine vision technology is proposed. For single feature describe image is uncomprehensive, a combinative feature model of color moments,Zernike moments and gray level co-occurrence matrix is established, it is used to determine the comprehensive characteristics of fruits and vegetables. Before the calculation of Zernike moment, binary image edge extraction based on the H component threshold is carried out. Using BP neural network and support vector classifier for sorting the experimental samples respectively, by simulation experiments, the algorithm of multiple features combination's feasibility and effectiveness is verified. The BP neural network and support vector machine classifier's sorting effect is contrasted and analyzed, sorting rate both reaches more than 95%.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第5期173-178,共6页 Computer Engineering and Applications
基金 四川省应用基础计划(No.2013JY0086) 四川省科技创新苗子工程(No.20132033)
关键词 颜色矩 ZERNIKE矩 灰度共生矩阵 支持向量机 果蔬分选 color moments Zernike moments gray level co-occurrence matrix support vector machine fruits and vegetables' sorting
  • 相关文献

参考文献16

  • 1Unay D,Gosselin B,Kleynen O,et al.Automatic grading of bi-colored apples by multispectral machine vision[J].Computers and Electronics in Agriculture,2011,75(1):204-212.
  • 2Yimyam P,Clark A F.Agricultural produce grading by computer vision using genetic programming[C]//2012IEEE International Conference on Robotics and Biomimetics(ROBIO),2012:458-463.
  • 3崔永杰,李平平,丁宪,苏帅.猕猴桃分级果实表面缺陷的检测方法[J].农机化研究,2012,34(10):139-142. 被引量:8
  • 4Roseleena J,Nursuriati J,Ahmed J,et al.Assessment of palm oil fresh fruit bunches using photogrammetric grading system[J].International Food Research Journal,2011,18(3):999-1005.
  • 5Alipasandi A,Ghaffari H,Alibeyglu S Z.Classification of three varieties of peach fruit using artificial neural network assisted with image processing techniques[J].International Journal of Agronomy and Plant Production,2013,4(9):2179-2186.
  • 6王水平,唐振民,范春年,裴晓芳,谢永华.基于SVM的水果分类算法研究[J].武汉理工大学学报,2010,32(16):44-47. 被引量:18
  • 7Zhang Y,Wu L.Classification of fruits using computer vision and a multiclass support vector machine[J].Sensors,2012,12(9):12489-12505.
  • 8Rocha A,Hauagge D C,Wainer J,et al.Automatic fruit and vegetable classification from images[J].Computers and Electronics in Agriculture,2010,70(1):96-104.
  • 9Bhuravarjula H K,Kumar V N S V.A novel content based image retrieval using variance color moment[J].IJCER,2012,1(3):93-98.
  • 10Ryu S J,Kirchner M,Lee M J,et al.Rotation invariant localization of duplicated image regions based on Zernike moments[J].IEEE Transactions on Information Forensics and Security,2013,8(8):1355-1370.

二级参考文献43

共引文献48

同被引文献21

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部