期刊文献+

无参考图像质量评价算法性能分析 被引量:2

Perfoamance Analysis of No-reference ImageQualityAssessment Algorithm
下载PDF
导出
摘要 图像质量评价是计算机视觉和图像处理领域的一个热门问题,具有重要的研究价值和广阔的应用前景。根据所需原始图像信息的多少,客观图像质量评价方法主要分为全参考图像质量评价方法、部分参考图像质量评价方法和无参考图像质量评价方法。但是在实际应用过程中,参考图像往往难以获取或是不存在,因此需要对无参考图像质量评价算法进行研究。近年来,很多无参考质图像评算法被相继提出,但是国内还没有相关文献对这些算法的性能进行系统的分析和比较。基于此,论文首先选取了七种具有代表性的无参考图像质量评价算法并对其进行了简要介绍,然后全面介绍并总结了常用的图像质量评价算法性能验证数据库以及算法性能指标,最后,对七种算法的性能进行了详细的分析和比较。 Image quality assessment is a hot issue in the field of computer vision and image processing,and it has great research value and application prospect.According to the required knowledge of the original image,object image quality assessment methods are mainly divided into no-reference methods,reduced-reference methods and full-reference methods.But in practical application,the reference image is hard to achieve or even not exist.Therefore,it is necessary to do research in no-reference methods.Many no-reference methods have been proposed in recent years but no article has systematically analyze and compare these methods.Seven representative no-reference methods are chosen to do the job mentioned before and introduced some typical image quality databases and algorithm performance indicators.In the end,the seven algorithms are analyzed and compared in detail.
出处 《计算机与数字工程》 2016年第2期337-342,共6页 Computer & Digital Engineering
关键词 无参考 图像质量评价 图像质量数据库 算法性能 no-reference image quality assessment image quality database algorithm performance
  • 相关文献

参考文献18

  • 1Wang Z, Bovik A C. Modern Image Quality Assess- ment[M]. Morgan 8c Claypool Publishers, 2006.
  • 2Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices[J]. Signal Pro- cessing Letters, IEEE, 2010,17(5) : 513-516.
  • 3Saad M, Bovik A C, Charrier C. DCT statistics model- based blind image quality assessment[C]//Image Pro- cessing(ICIP), 2011 18th IEEE International Confer- ence or IEEE, 2011 .- 3093-3096.
  • 4Mittal A, Moorthy A K, Bovik A C. No-reference im- age quality assessment in the spatial domain[J]. Image Processing, IEEE Transactions on, 2012,21(12) : 4695- 47O8.
  • 5Liu L, Dong H, Huang H, et al. No-reference image quality assessment in curvelet domain[J]. Signal Pro- cessing Image Communication, 2014,29 (4) : 494-505.
  • 6Moorthy A K, Bovik A C. Blind image quality assess- ment: From natural scene statistics to perceptual quali-ty[J]. Image Processing, IEEE Transactions on, 2011, 20(12) .. 3350-3364.
  • 7Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. Signal Processing Letters, IEEE, 2013,20(3) : 209-212.
  • 8Liu L, Liu B, Huang H, et al. No-reference image quality assessment based on spatial and spectral entro- pies [J]. Signal Processing: Image Communication, 2014,29(8) ..856-863.
  • 9Ponomarenko N, Lukin V, Zelensky A, et al. TID2008-a database for evaluation of full-reference visual quality assessment metrics [J]. Advances of Modern Radioelectronics, 2009,10 (4) .. 30-45.
  • 10Ponomarenko N, Ieremeiev O, Lukin V, et ak Color im- age database TID201g: Peculiarities and preliminary re- sults[C]//Visual Information Processing(EUVIP), 2013 4th European Workshop on. IEEE, 2013 : 106-111.

二级参考文献9

共引文献3

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部