期刊文献+

中文评论产品特征与观点抽取方法研究 被引量:8

Extracting Product Feature and User Opinion from Chinese Reviews
原文传递
导出
摘要 【目的】针对中文在线评论产品特征与观点抽取问题,提出一种基于置信度排序模型的抽取方法。【方法】在改进HITS算法基础上,综合考虑候选特征观点词的关联关系和语义关系构建置信度排序模型,提取并过滤特征观点词。【结果】和基准模型相比,本文方法对中文语料的产品特征和观点抽取能达到较高准确率和召回率。【局限】仅针对产品显性特征抽取,没有考虑隐性特征的识别与抽取。【结论】利用特征词和观点词的双向增强关系和语义关系,可以有效抽取产品特征观点;情感极性过滤对提升观点词抽取准确率有较大作用。 [Objective] This study proposed a confidence ranking model to extract product feature and user opinion from the Chinese online reviews. [Methods] Examining the semantic and association relations between candidate words, we built the confidence ranking model based on the improved HITS algorithm, and then retrieved the feature and opinion words. [Results] Compared with the reference model, our method showed better recall and precision rates while extracting the feature and opinion words from the Chinese corpus. [Limitations] Only extracted the explicit feature and opinion words, and did not try to identify and extract the implicit ones. [Conclusions] We could effectively extract the feature and opinion words using their mutual reinforcement and semantic relations. Filtering method of the semantic polarity could also improve the precision of the extracted opinion words.
作者 孟园 王洪伟
出处 《现代图书情报技术》 CSSCI 2016年第2期16-24,共9页 New Technology of Library and Information Service
基金 国家自然科学基金项目"中文语境下基于模糊本体的用户在线评论的情感分析"(项目编号:70971099)和国家自然科学基金项目"在线评论对商家业绩的影响研究:情感分析的视角"(项目编号:71371144)的研究成果之一
关键词 置信度排序 HITS 关联关系 语义关系 双向增强关系 特征观点抽取 Confidence ranking HITS Association relation Semantic relation Mutual reinforcement Feature opinion extraction
  • 相关文献

参考文献17

  • 1王永,张勤,杨晓洁.中文网络评论中产品特征提取方法研究[J].现代图书情报技术,2013(12):70-73. 被引量:13
  • 2Zhang L, Liu B, Lim S H, et al. Extracting and Ranking Product Features in Opinion Documents [C]. In: Proceedings of the 23rd International Conference on Computational Lingusitics (COLING), Beijing, China. Stroudsburg, PA, USA: ACL, 2010: 1462-1470.
  • 3郗亚辉.产品评论特征及观点抽取研究[J].情报学报,2014,33(3):326-336. 被引量:11
  • 4Jin W, Ho H H, Srihari R K. A Novel Lexicalized HMM-based Learning Framework for Web Opinion Mining [C]. In: Proceedings of the 26th Annual International Conference on Machine Learning (ICML), Montreal, Canada. New York, NY, USA: ACM, 2009: 465-472.
  • 5Li F T, Han C, Huang M L, et al. Structure-aware Review Mining and Summarization [C]. In: Proceedings of the 23rd International Conference on Computational Linguistics (COLING), Beijing, China. Stroudsburg, PA, USA: ACL, 2010: 653-661.
  • 6Wu Y B, Zhang Q, Huang X J, et al. Phrase Dependency Parsing tbr Opinion Mining [C]. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), Singapore. Morristown, N J, USA: ACL, 2009: 1533-1541.
  • 7Titov 1, McDonald R. Modeling Online Reviews with Multi-grain Topic Models [C]. In: Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China. New York, NY, USA: ACM, 2008:111-120.
  • 8Zhao W X, Jiang J, Yan H F, et al. Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid [C]. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), Massachusetts, USA. Stroudsburg, PA, USA: ACL, 2010: 56-65.
  • 9Hu M Q, Liu B. Mining and Summarizing Customer Reviews[C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Seattle, USA. New York, NY, USA: ACM, 2004: 168-177.
  • 10Aravindan S, Ekbal A. Feature Extraction and Opinion Mining in Online Product Reviews [C]. In: Proceedings of the 2014 International Conference on Information Technology (ICIT), Bhubaneswar, India. New York, NY, USA: IEEE, 2014: 94-99.

二级参考文献58

  • 1江亮.学术博客的“无形学院”交流模式探析[J].情报科学,2006,24(2):296-299. 被引量:29
  • 2Ku L,et al. Opinion extraction, summarization andtracking in news and blog corpora [C] // Proc. ofAAAI-2006 Spring Symposium on ComputationalApproaches to Analyzing Weblogs,2006 :100?107.
  • 3Zheng Y,et al. Extracting product features fromChinese customer reviews [C] // Proc. of the 3rdInt’l Conf. on Intelligent System and KnowledgeEngineering,2008 : 285 ?290.
  • 4Bloom K,et al. Extracting appraisal expressions[C]//Proc. of Conf. of the North American Chapter ofthe Association for Computational Linguistics:Human Language Technologies ? 07,2007 : 308 ?315.
  • 5Su Q,et al. Hidden sentiment association in Chineseweb opinion mining [C]//Proc. of the 17th Int,1Conf. on World Wide Web,2008: 959?968.
  • 6Zhao Y,et al. Appraisal expression recognition withsyntactic path for sentence sentiment classification[J]. International Journal of Computer Processing ofOriental Languages^2010,23(1) :21 ?37.
  • 7Hu M,Liu B. Mining and Summarizing CustomerReviews [C] // Proc. of the 10th ACM SIGKDDInt’l Conf. on Knowledge Discovery Data Mining,2004:168?177.
  • 8Liu J,et al. Opinion searching in multi-productreviews[C]//Proc. of the 6th IEEE Int,l Conf. onComputer and Information Technology,2006: 25 ?30.
  • 9Scaffidi C? et al. Red opal : Product-feature scoringfrom reviews[C]//Proc. of the 8th ACM Conf. onElectronic commerce,2007 -? 182?191.
  • 10Zhang S,et al. Extracting product features andsentiments from Chinese customer reviews [C] //Proc. of the the 7th Int? 1 Conf. on LanguageResources and Evaluation ?2010 : 1142^1145.

共引文献36

同被引文献79

引证文献8

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部