摘要
针对实际工程中广泛存在的孔洞边缘含有随机微裂纹的孔口应力分析问题建立了理论模型.利用微裂纹在小尺度下的局部保角性构造近似的复变函数,通过对微裂纹与宏观孔洞的尺度分离获得了不同尺度下椭圆孔口的应力场,并扩大了复变函数的应用范围.结果表明,通过近似的复变函数的构造和微裂纹与宏观孔洞的尺度分离,能够准确计算含微裂纹椭圆孔口的应力场和应力强度因子.当含随机微裂纹的椭圆孔洞所在平面承受竖向均布载荷时,椭圆长短轴的比值越大,应力强度因子的极值越大,且应力强度因子沿椭圆边缘的衰减速度越快;当椭圆长短轴的比值足够小时,微裂纹位置对应力强度因子的影响不大.
In view of the problem of analysis of stress field near an elliptical hole with a random microcrack,which existed widely in practical projects,a theoretical model was proposed in this paper.According to local conformal properties of micro-crack in small-scale,the approximate composite conformal mapping function was established.By splitting the micro-crack and macro-hole,different scale stress fields were obtained,which extended the application range of the complex function method.The research results show that the stress fields and stress intensity factor(SIF)near the micro-crack can be obtained by constructing and scale separating composite conformal mapping function.On the condition that the infinite plane containing an ellipse hole with a random micro-crack is under vertical uniform load,the bigger the ratio of long axis and short axis of ellipse hole is,the faster the KIis decreased around the edge of ellipse,and the greater the maximum is.When the ratio is sufficiently small,the micro-crack position does not affect stress intensity factor of the micro-crack.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2016年第2期272-277,共6页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金项目(11072060)资助
关键词
椭圆孔口
微裂纹
尺度分离
复变函数
保角变换
elliptical hole
micro-crack
scale separation
complex function
conformal mapping