期刊文献+

基于社区极大类发现的大数据并行聚类算法 被引量:6

Large data parallel clustering algorithm based on discovery of maximal class in the community
下载PDF
导出
摘要 为了能在大数据中准确快速地寻找到网络结构,该文提出一种基于社区极大类的大数据聚类算法。对于初始节点不确定和适应度函数计算所带来的时间消耗,引入局部关键节点和对适应度公式进行改进来减少时间消耗。对于初始社区的形成,引入了极大团的概念并通过分析极大团的特性,得出社区的核心类别是由极大团构成,同时提出通过极大团的发现来得到局部核心类别的方法并提出了极大团发现算法的并行策略,然后提出整个算法的并行策略并在真实数据集上实验。实验结果证明该文提出的算法是可行和有效的,适用于大规模数据的网络结构发现。 In order to find the network structure in the big data accurately and quickly, a large data clustering algorithm based on community clustering is proposed here. The key local node and improved fitness function are introduced to reduce the time consumption caused by the initial node's uncertainty and the fitness function computing. For the formation of the initial community, this paper introduces the conception of the maximum clique. The conclusion that the core category of the community is made up of the maximum clique is drawn through analyzing its properties. This paper proposes the way of getting a local core class through finding the maximum clique. This paper proposes a parallel strategy of the maximum clique discovery algorithm and tests it in the real data sets. The experimental results show this algorithm is feasible and effective which can be applied to finding the network structure of large-scale data.
作者 钱晓东 曹阳
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2016年第1期117-123,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(71461017)
关键词 大数据 聚类 复杂网络 局部关键节点 核心类别 极大团 适应度 并行算法 big data clustering complex network local key nodes core category maximal group fitness function parallel computing
  • 相关文献

参考文献11

  • 1Gantz J,Reinsel D.2011 Digital universe study:extracting value from chaos[M].USA:IDC Go-to-Market Services,2011.
  • 2Bughin J,Chui M,Manyika J.Clouds,big data and smart assets:ten tech-enabled business trends to watch[J].McKinsey Quarterly,2010,8:1-14.
  • 3王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138. 被引量:714
  • 4Guha S,Rastogi R,Shim K.Cure:an efficient clustering algorithm for large databases[J].Information System Journal,1998,26(1):35~58.
  • 5Kantabutra S,Couch A L.Parallel k-means clustering algorithm on nows[J].Nectec Technical Journal,2000,1(6):243-247.
  • 6Clauset A.Finding local community structure in networks[J].Physics Review E,2005,72:1-6.
  • 7Lancichinetti A,Fortunato S,Kertesz J.Detection of the overlapping and hierarchical community structure in complex networks[J].New Journal of Physics,2009,11:1-18.
  • 8Nicosia V,Mangioni G,Carchiolo V,et al.Extending the definition of modularity to directed graphs with overlapping communities[J].Journal of Statistical Mechanics:Theory and Experiment,2009,3:03024.
  • 9Bonacich P.Factoring and weighting approaches to status scores and clique identification[J].J Math Sociol,1972,2:113-120.
  • 10张琨,沈海波,张宏,蒋黎明,衷宜.基于灰色关联分析的复杂网络节点重要性综合评价方法[J].南京理工大学学报,2012,36(4):579-586. 被引量:26

二级参考文献87

  • 1张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1999.
  • 2Vespignani A. Complex networks : The fragility of inter- dependency[ J]. Nature,2010,464:984-985.
  • 3王林,戴冠中.复杂网络的Scale.free性、Scale-free现象及其控制[M].北京:科学出版社,2009.
  • 4Lai Y C, Motter A E, Nishikawa T. Attacks and cascades in complex networks [ J ]. Lecture Notes in Physics, 2004,650 : 299- 310.
  • 5Landherr A, Friedl B, Heidemann J. A critical review of centrality measures in social networks [ J ]. Business & Information Systems Engineering ,2010,2 ( 6 ) :371-385.
  • 6Kermarrec A, Merrer E L, Sericola B, et al. Second order centrality: distributed assessment of nodes criticity in complex networks [ J ]. Computer Communications,2011, 34(5) :619-628.
  • 7Hu J, Wang B, Lee D Y. Evaluating node importance with multi-criteria [ A ]. IEEE/ACM International Conferences on Cyber, Physical and Social Computing [ C ]. Hangzhou, China :IEEE,2010:792-797.
  • 8Holme P, Kim B J, Chang N Y, et al. Attack vulnerability of complex networks [ J ]. Physical Review E,2002,65 (5) : e056109.
  • 9Linyuan Lti, Tao Zhou. Role of weak ties in link prediction of complex networks [ A ]. Proceeding of the 1 st ACM International Workshop on Complex Networks Meet Information & Knowledge Management [ C ]. Hong Kong, China : ACM ,2009:55-58.
  • 10Buldyrev S V, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks [ J ]. Nature, 2010,464 : 1025 - 1028.

共引文献740

同被引文献34

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部