期刊文献+

导管调距桨实效伴流分数的简化CFD计算

Simplified CFD calculations for the effective wake fraction of ductedcontrollable pitch propellers
下载PDF
导出
摘要 为了获得实效伴流分数和推力减额系数,一般情况下要进行船桨自航实验。在导管调距桨的自航实验中,由于需要测量导管的推力以及调节螺距比,会增加实验的复杂程度。近年来,数值水池的应用得到了广泛关注。但由于计算模型通常为整条船和桨,几何模型复杂且计算量大。针对船体较长且具有平行中体的船舶,本文探索了一种简化模型方法即考虑半个船模和桨,忽略船首对尾部半流的影响。与实验结果比较,满载和压载工况下计算得到的伴流分数误差均约在4%左右。本文的研究表明在缺少实验条件的情况下,简化模型的CFD方法可以作为研究伴流分数的有效手段。 Self-propulsion tests of a ship and a propeller are generally required in order to obtain effective wake fractions and thrust reduction coefficients. For ducted controllable-pitch propellers, the complexity of measurement is increased because of the need to measure thrust of the duct and to adjust the pitch ratio. Ap- plication of numerical towing tanks have been attracted attention in recent years. However due to the com- putational domain involving the whole hull and propeller, the geometrical model is complex and the amount of computation is huge. For a long ship with a parallel middle body, a simplified ship model involving only half of the ship and a propeller is explored in this paper. The effect of the ship bow on the wake is ignored. Compared with measurements, an error for computed effective wake fractions is about 4% for both full loading and ballast conditions. This result shows that the current simplified method can be used to predict effective wake coefficients when lacking of experimental facility.
出处 《传动技术》 2015年第4期27-31,36,共6页 Drive System Technique
基金 国家高技术研究发展计划(863计划)(2009AA045002)
关键词 导管调距桨 自航试验 简化模型 CFD伴流分数 Ducted controllable-pitch propeller self-propulsion test simplified model CFD wake fraction
  • 相关文献

参考文献8

二级参考文献59

  • 1史一鸣.多桨船船模自航试验推进因子分析方法探讨[J].船舶设计通讯,2008(1):14-16. 被引量:2
  • 2张楠,沈泓萃,姚惠之.潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J].船舶力学,2005,9(1):1-13. 被引量:78
  • 3杨仁友,沈泓萃,姚惠之.带前置导叶桨潜艇自航试验的数值模拟与自航因子预报[J].船舶力学,2005,9(2):31-40. 被引量:11
  • 4盛振邦,刘应中.船舶原理[M].上海:上海交通大学出版社,2005.
  • 5张楠,沈泓萃,姚惠之.潜艇近海底与近水面绕流数值模拟研究[J].船舶力学,2007,11(4):498-507. 被引量:17
  • 6YANG C, LOHNER R. Prediction of flows over an axisymmetric body with appendages[C]. The 8th Inter- national Conference on Numerical Ship Hydrodynamics, Busan, Korea, 2003. 233-247.
  • 7RHEE B, SUNG C H, KOH I Y. Validation of the flow around an appended suboff body using parallelization and a new wall method[C]. The 8th International Con- ference on Numerical Ship Hydrodynamics, Busan, Korea, 2003. 223-232.
  • 8BENSOW R E, PERSSON T, FUREBY C. Large eddy simulation of the viscous flow around submarine hulls[C]. 25th Symposium on Naval Hydrodynamics, St. John's, Newfoundland and Labrador, Canada, 2004. 261-276.
  • 9ZHANG Nan, SHEN Hong-cui, YAO Hui-zhi. Nume- rical simulation of flow around submarine under full surface and submerged conditions[C]. 5th Osaka Collo- quium on Advanced Research on Ship Viscous Flow and Hull Form Design by EFD and CFD Approaches, Osaka, Japan, 2005.
  • 10YAO Hui-zhi , ZHANG Nan, SHEN Hong-cui, et al. Exploration of submarine wake and powering perfor- mance using CFD method[C]. 13th Annual Conference of the Computational Fluid Dynamics Society of Canada, Newfoundland, Canada, 2005.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部