期刊文献+

基于改进支持向量机的石煤提钒行业清洁生产评价研究 被引量:4

Assessment for cleaner production of extracting vanadium from stone coal based on the support vector machine
原文传递
导出
摘要 采用遗传算法(GA)对支持向量机(SVM)进行改进,并将其应用于石煤提钒行业清洁生产评价.在系统研究石煤提钒工艺类型的基础上,根据前期已建立的石煤提钒行业清洁生产评价指标体系,提出GA改进SVM的应用思路,通过对3种工艺类型企业的现场数据采集,形成训练和测试样本,并利用GA算法确定出各类参数(惩罚参数C和核函数参数g),分别为强酸浸工艺C=2.1049,g=5.2184;弱酸浸工艺C=0.0035286,g=1.9947;水浸工艺C=0.39587,g=1.4105.GA-SVM模型测试结果表明,分类精度达到100%.通过与其他评价方法对比表明,训练好的GA-SVM方法针对小样本数据在分类精度和可操作性上都较其他方法有明显优势,实现了对石煤提钒行业清洁生产水平的定量评价. We improved the Support Vector Machine( SVM) using Genetic Algorithm( GA) and applied it to the cleaner production( CP) assessment in the industry of vanadium extraction from stone coal in this paper. The application of improving SVM by GA was proposed based on the current assessment indicator framework of CP in the business and the systematic research on the process types of vanadium extraction from stone coal. By analyzing the acquired data collections from three different enterprises,a series of parameters of each process were determined using the GA algorithm. In the strong acid leaching process,C value was 2.1049 and g value of 5.2184. On the other hand,in the weak acid leaching process,C and g were lowered to 0.0035286 and 1.9947,respectively. In the water leaching process,C and g was 0. 39587 and 1. 4105,respectively. The results of GA-SVM improvement model showed that the classification accuracy could be as high as 100%. We also made comparisons with other assessment method,it was demonstrated that the well-trained GA-SVM method had significantly improved the classification accuracy and operating process of a limited number of data samples. The GASVM can be used to quantitatively assess the CP level in the industry of vanadium extraction from stone coal.
出处 《环境科学学报》 CAS CSCD 北大核心 2016年第3期1113-1120,共8页 Acta Scientiae Circumstantiae
基金 环保公益性行业科研专项(No.201009013) 中央高校基本科研业务费专项(No.CZQ15016)~~
关键词 石煤提钒 清洁生产 支持向量机 遗传算法 评价方法 extracting vanadium from stone coal cleaner production support vector machine(SVM) genetic algorithm(GA) assessment methods
  • 相关文献

参考文献21

二级参考文献147

共引文献139

同被引文献42

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部