期刊文献+

国内基于主题模型的科技文献主题发现及演化研究进展 被引量:23

Research Progress of Scientific and Technical Literature Topic Detection and Evolution Based on Topic Model in China
原文传递
导出
摘要 [目的 /意义]分析中国国内基于主题模型的科技文献主题发现及演化研究进展,以期为相关研究人员提供参考借鉴及研究思路。[方法 /过程]选取中国知网(CNKI)数据库及万方数据知识服务平台作为文献来源,检索并筛选相关文献,通过人工判读提炼出基于主题模型的科技文献主题发现及演化研究的分析流程,并采用文献分析法对流程中国内研究人员所使用到的策略、方法、分析手段等进行归纳和总结。[结果 /结论]研究已初具规模,形成较为完整的分析流程,同时各个流程环节上所涉及到的策略、方法和分析手段较为多样化。另外,也存在着一些问题:主题模型方法在科技文献领域的应用尚且不成熟,主题数目固定,缺少对主题模型应用效果的评价方法与准则。 [ Purpose/significance ] This paper studiesresearch progress of scientific and technical literature topic detection and evolution based on topic model in China, to provide reference and idea for related researchers. [ Method/ process ] It selects CNKI and WANGFANG DATA as data sources, retrievesand screensrelated articles, extractsthe analysis process of literature topic detection and evolution based on topic model by manual interpretation, and concludes the strategies and method that Chinese researchers use in the process with literature analysis method. [ Resnit/conclusion ] This related research is comparatively mature, and the analysis process is comparatively complete, and the strategies, methods and tools involved in every steps of analysis process are of diversity. On the other hand, there are some shortages, such as the application of topic model in literature topic detection and evolution is not that mature, the number of topics is constant, and it islack of evaluation methods and standards for application effect of topic model.
作者 王燕鹏
出处 《图书情报工作》 CSSCI 北大核心 2016年第3期130-137,共8页 Library and Information Service
关键词 主题模型 主题发现 主题演化 文本预处理 参数估计 topic model topic detection topic evolution text processing parameter estimation
  • 相关文献

参考文献24

  • 1LANDAUER T K, MCNAMARA D S, DENNIS S, et al. Hand- book of latent semantic analysis ~ M ]. Mahwah : Lawrence Erlbaum Associates, 2007.
  • 2DEERWESTER S C, DUMAIS S T, LANDAUER T K, et al. In- dexing by latent semantic analysis[J]. Journal of the American So- ciety for Information Science, 1990, 41 (6) : 391 - 407.
  • 3HOFMANN T. Probabilistic latent semantic indexing [ C ]//Pro- ceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. New York: ACM Press, 1999 : 50 - 57.
  • 4BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation [J]. The journal of machine learning research, 2003, 3 (3): 993 - 1022.
  • 5GRIFFITHS D, TENENBAUM M. Hierarchical topic models and the nested Chinese restaurant process [ C ]//Advances in neural in- formation processing systems 16: proceedings of the 2003 confer- ence. Cambridge: MIT Press, 2004:17 -24.
  • 6ROSEN-ZVI M, GRIFFITHS T, STEMVERS M, ct al. The author -topic model for authors and documents E C ]//Proceedings of the 20th conference on uncertainty in artificial intelligence. Arlington: AUAI Press, 2004 : 487 - 494.
  • 7STEYVERS M, SMYTH P, ROSEN-ZVI M, et al. Probabilistic author-topic models for information discovery ~ C ]//Proceedings of the tenth ACM SIGKDD international conference on knowledge dis- covery and data mining. New York: ACM Press, 2004:306 -315.
  • 8ROSEN-ZVI M, CHEMUDUGUNTA C, GRIFFITHS T, ct al. Leaming author-topic models from text corpora[ J]. ACM transac- tions on information systems (TOIS), 2010, 28( 1 ): 312-324.
  • 9BLEI D M, LAFFERTY J D. Dynamic topic models[ C]//Pro- ceedings of the 23rd international conference on machine learning. New York: ACM Press, 2006:113 - 120.
  • 10赵迎光,洪娜,安新颖.主题模型在主题演化方法中的应用研究进展[J].现代图书情报技术,2014(10):63-69. 被引量:9

二级参考文献313

共引文献736

同被引文献319

引证文献23

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部