期刊文献+

基于排序学习的推荐算法研究综述 被引量:108

Survey on Learning-to-Rank Based Recommendation Algorithms
下载PDF
导出
摘要 排序学习技术尝试用机器学习的方法解决排序问题,已被深入研究并广泛应用于不同的领域,如信息检索、文本挖掘、个性化推荐、生物医学等.将排序学习融入推荐算法中,研究如何整合大量用户和物品的特征,构建更加贴合用户偏好需求的用户模型,以提高推荐算法的性能和用户满意度,成为基于排序学习推荐算法的主要任务.对近些年基于排序学习的推荐算法研究进展进行综述,并对其问题定义、关键技术、效用评价、应用进展等进行概括、比较和分析.最后,对基于排序学习的推荐算法的未来发展趋势进行探讨和展望. Learning to rank(L2R) techniques try to solve sorting problems using machine learning methods, and have been well studied and widely used in various fields such as information retrieval, text mining, personalized recommendation, and biomedicine. The main task of L2 R based recommendation algorithms is integrating L2 R techniques into recommendation algorithms, and studying how to organize a large number of users and features of items, build more suitable user models according to user preferences requirements, and improve the performance and user satisfaction of recommendation algorithms. This paper surveys L2 R based recommendation algorithms in recent years, summarizes the problem definition, compares key technologies and analyzes evaluation metrics and their applications. In addition, the paper discusses the future development trend of L2 R based recommendation algorithms.
出处 《软件学报》 EI CSCD 北大核心 2016年第3期691-713,共23页 Journal of Software
基金 国家自然科学基金(61272268 61103069) 国家重点基础研究发展计划(973)(2014CB340404) 教育部新世纪优秀人才支持计划(NCET-12-0413) 霍英东教育基金会高等院校青年教师基金(142002) 上海市青年科技启明星计划(15QA1403900)~~
关键词 排序学习 推荐算法 机器学习 兴趣模型 个性化服务 learning to rank recommendation algorithm machine learning interest model personalized service
  • 相关文献

参考文献6

二级参考文献71

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:195
  • 3李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.
  • 4Zhou T, Ma H, Lyu , M. , King, 1. UserRec: A User Recommendation Framework in Social Tagging Sys?tems[CJ/ /Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010: 1486-1491.
  • 5Jilin Chen, Werner Geyer, Casey Dugan. Make new friends, but keep the old: recommending people on so?cial networking sites[CJI /Proceedings of CHIll: Proceedings of the 27th international conference on hu?man factors in computing systems ACM New York, 2009.
  • 6Hiroyuki Koga , Tadahiro Taniguchi. Developing a User Recommendation Engine on Twitter Using Esti?mated Latent Topics], CJ/ /Proceedings of HCI (1) 2011: 461-470.
  • 7Geyer W, Dugan C, Millen D, et al. Recommending topics for self-descriptions in online user profiles[CJ/ / Proceedings of RecSys08, 2008: 59-66.
  • 8Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[CJ/ /Proceedings of DELOS- NSF Workshop on Personalization and Rec?ommender Systems in Digital Libraries. 2001.
  • 9Guy I, Zwerdling N, Carmel D, et al. Personalized recommendation of social software items based on so?cial relations[CJ/ /Proceedings of RecSys , 2009: 53- 60.
  • 10TY Liu. Learning to Rank for Information Retrieval[J]. Foundations and Trends in Information Retrieval, 2009.

共引文献48

同被引文献600

引证文献108

二级引证文献593

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部