期刊文献+

概述不同数理统计方法在冠心病中医证候特征分类中的应用 被引量:10

Summary of different mathematical statistics methods applying in classification of TCM syndromes of coronary heart disease
原文传递
导出
摘要 通过查阅近十年有关冠心病中医证候分类研究的文献,了解冠心病中医证候特征以及数理统计方法在其证候分类中的应用。冠心病中医证候分类以虚实为纲,然而不同的证候在不同时期的分布略有不同,至今未有统一标准。近年来,不同的数理统计方法逐渐被引入到冠心病中医证候分类研究中,文章在讨论冠心病证候特征的基础上,概述了支持向量机、人工神经网络、聚类分析等数理统计方法在中医证候分类中的应用及其存在的优势与不足,为冠心病的中医证候分类研究及临床诊治提供参考依据,也便于研究者取长补短,充分发挥各种数理统计方法的最大作用。 To know the application of different mathematical statistics methods in classification of TCM syndromes of coronary heart disease through consulting literatures about classification of TCM syndromes of coronary heart disease in recent ten years. The syndromes classification of coronary heart disease was bases on the guiding principle as deficiency and excess, and different syndromes distributed differently in different periods. There was no well-established standard for syndrome classification so far. In recent years, various mathematic statistics methods were introduced into the researches about syndromes of coronary heart disease gradually. This paper summarized the advantages and disadvantages of applying mathematic statistics methods as support vector machine(SVM), artificial neural network, clustering analysis and so on in the researches about syndrome classification based on the discussion of syndrome characteristics of coronary heart disease, in order to provide reference basis for the researches about syndrome classification and clinical diagnosis and treatment of coronary heart disease. It would be convenient for researchers to overcome their weakness by acquiring others' strong points, and gave full play to the role of various mathematic statistics methods.
出处 《中华中医药杂志》 CAS CSCD 北大核心 2016年第3期957-960,共4页 China Journal of Traditional Chinese Medicine and Pharmacy
基金 国家自然科学基金面上项目(No.81173199) 国家中医药管理局重点学科中医诊断学科建设经费资助~~
关键词 冠心病 中医证候 特征分类 数理统计方法 综述 Coronary heart disease TCM syndrome Syndromes classification Mathematical statistics method Review
  • 相关文献

参考文献25

二级参考文献244

共引文献1042

同被引文献119

引证文献10

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部