期刊文献+

On Total Domination Polynomials of Certain Graphs

On Total Domination Polynomials of Certain Graphs
下载PDF
导出
摘要 We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph.
机构地区 Faculty of Mathematics
出处 《Journal of Mathematics and System Science》 2016年第3期123-127,共5页 数学和系统科学(英文版)
关键词 total dominating set total domination number total domination polynomial 全控制集 多项式 组成部分 正则图 点传递图 彼得森图 DT 控制数
  • 相关文献

参考文献7

  • 1Akbari, S., Alikhani, S. and Peng, Y.H. 2010, Characterization of graphs using Domination Polynomial, European Journal of Combinatorics, Volume 31, Issue 7, October 2010, Pages 1714 - 1724.
  • 2Alikhani.S and Hamzeh Torabi, 2010, On Domination Polynomials of complete partite Graphs, World Applied Sciences Journal, 9(1 ):23-24.
  • 3Alikhani.S and Peng.Y.H, 2009, Introduction to Domination Polynomial of a graph, arXiv:0905.2251vl [math.CO] 14 May.
  • 4Alikhani. S. and Peng, Y.H, 2010, Dominating sets and Domination Polynomials of Certain Graphs, H, Opuscula Mathematica, Volume 30, No 1, Pages 37 - 51.
  • 5Alikhani. S, Yee-Hock Peng, 2011, Domination Polynomials of Cubic graphs of order 10, Turkish Journal of Mathematics, Volume 35, Issue 3, Pages 335 - 366.
  • 6Chartrand.G and Zhang.P, 2004, Introduction to Graph Theory, Mc Graw Hill, Higher Education India August ISBN: 978007123829.
  • 7Vijayan.A, Sanal Kumar.S, 2012, On Total Domination Polynomial of graphs, Global Journal of Theoretical and Applied Mathematical Sciences, ISSN 2248-9916, Volume 2, Issue 2, Pages. 91-97.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部