期刊文献+

基于混合特征的拓扑结构射影不变量 被引量:1

Topology projective invariants based on mixed features
下载PDF
导出
摘要 为提高图像信息中几何特征拓扑结构射影不变量计算的准确度和精度,在点特征拓扑信息提取算法的基础上进行改进。将直线特征与点特征结合,引入基于混合特征模型的齐次算法,获得拓扑结构的射影不变量,利用直线特征多像素点的特性,将构成直线的任意两点引入不变量方程中,增强计算的抗干扰能力,降低匹配错误率,运用矩阵运算方法以及不变量的可解性约束和存在性约束构造不变量函数。通过Matlab仿真对新旧算法得出的结果进行分析,验证了由混合特征算法获得的拓扑结构射影不变量的高精度性和高稳定性。 To improve the precision and stability of the calculation of geometric feature topology projective invariants based on image information,an improved algorithm based on point features was proposed.A homogeneous algorithm based on hybrid features model was presented to get topology projective invariants by combining line features and point features,and any two points of a straight line were introduced into invariants equation using multi-pixel characteristics of line features.The anti-jamming ability was then enhanced and the matching error rates were reduced.Matrix method was applied and invariants function was built using the solvability and existence constraints of invariants.The results of old and new algorithms were analyzed through Matlab simulation and the high precision and stability were verified by the topology projective invariants based on the hybrid features algorithm.
出处 《计算机工程与设计》 北大核心 2016年第3期690-694,761,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61379080) 国家科技支撑计划基金项目(2013BAH45F02) 山西省自然科学基金项目(2014011018-3)
关键词 点特征 直线特征 混合特征 拓扑结构 射影不变量 point features line features mixed features topology projective invariants
  • 相关文献

参考文献9

二级参考文献66

  • 1罗钟铉,刘成明.灰度图像匹配的快速算法[J].计算机辅助设计与图形学学报,2005,17(5):966-970. 被引量:72
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3胡宝洁,曾峦,熊伟,赵忠文.基于立体视觉的目标姿态测量技术[J].计算机测量与控制,2007,15(1):27-28. 被引量:14
  • 4向长波,刘太辉,宋建中.基本矩阵的鲁棒贪心估计算法[J].计算机辅助设计与图形学学报,2007,19(5):651-655. 被引量:11
  • 5Lu C P, Hager G, Eric M. Fast and globally convergent pose esti- mation from video images [J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence (S0162--8828), 2000, 22 (6) : 610 - 622.
  • 6R Hartley, A Zisserman, I Ebrary. Multiple View Geometry in Computer Vision [M]. Cambridge: Cambridge University Press, 2003. 239.
  • 7X Armangu, J Salvi. Overall view regarding fundamental matrix estimation [J]. Image and Vision Computing, 2003, 21 (2)205-220.
  • 8M A Fischler, R C Bolles. Random sample consensus: paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6) : 381-395.
  • 9Z Zhang. Determining the epipolar geometry and its uncertainty: a review [J]. International Journal of Computer Vision, 1998, 27 (2): 161-195.
  • 10P H S Torr, D W Murray. The development and comparison of robust methods for estimating the fundamental matrix [J]. International Journal of Computer Vision, 1997, 24 ( 3 ):271-300.

共引文献26

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部