期刊文献+

Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production 被引量:3

Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production
原文传递
导出
摘要 Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was synthesized via a solution-based route for the first time. As hydrogen evolution photocatalysts, both pure phase Mg1.2TiLsO5 and MgTiO3 nanocrystals exhibit excellent hydrogen production efficiency. In comparison with pure MgTiO3 nanocrystals, the asprepared Mg1.2Ti1.8O5 nanocrystals exhibited four times as much photocatalytic hydrogen production activity, up to 40 μmol.h-1 Photoelectrochemical analysis, including linear sweep voltammetry, transient photocurrent measurement, electrochemical impedance spectroscopy, and construction of Mott-Schottky plots, demonstrated that the enhanced photocatalytic activity was attributed to the large surface area, fast photoelectron transfer, higher carrier density, and efficient charge separation of the Mg1.2Ti1.8O5 nanocrystals. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was synthesized via a solution-based route for the first time. As hydrogen evolution photocatalysts, both pure phase Mg1.2TiLsO5 and MgTiO3 nanocrystals exhibit excellent hydrogen production efficiency. In comparison with pure MgTiO3 nanocrystals, the asprepared Mg1.2Ti1.8O5 nanocrystals exhibited four times as much photocatalytic hydrogen production activity, up to 40 μmol.h-1 Photoelectrochemical analysis, including linear sweep voltammetry, transient photocurrent measurement, electrochemical impedance spectroscopy, and construction of Mott-Schottky plots, demonstrated that the enhanced photocatalytic activity was attributed to the large surface area, fast photoelectron transfer, higher carrier density, and efficient charge separation of the Mg1.2Ti1.8O5 nanocrystals.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第3期726-734,共9页 纳米研究(英文版)
基金 This work was supported by the National Natural Sdence Foundation of China (Nos. 21171052, 21471050, 21501052 and 21473051), the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0959), the China Postdoctoral Science Foundation (No. 2015M570304), the Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-Q11009), Program for Innovative Research Team in University (No. IRT-1237), Heilongjiang Province Natural Science Foundation of Key Projects (No. ZD201301), Heilongjiang Province Natural Science Foundation Youth Fund (No. QC2015010) and Harbin Technological Innovation Talent of Special Funds (No. RC2013QN017028).
关键词 Mg1.2Ti1.8O5 MGTIO3 NANOCRYSTALS photocatalytic hydrogenproduction Mg1.2Ti1.8O5,MgTiO3,nanocrystals,photocatalytic hydrogenproduction
  • 相关文献

参考文献4

二级参考文献48

  • 1Kim, Y. I.; Salim, S.; Huq, M. J.; Mallouk, T. E. Visible- light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J. Am. Chem. Soc. 1991, 113, 9561-9563.
  • 2Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photo- catalysis. Chem Rev. 1995, 95, 69-96.
  • 3Gritzel, M. Photoelectrochemical cells. Nature. 2001, 414, 338-344.
  • 4Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Ioune, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature. 2006, 440, 295.
  • 5Chen, X. B.; Shen, S. H.; Guo, L. L; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010, 110, 6503-6570.
  • 6Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science. 2004, 306, 66669.
  • 7Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Costa, V. D.; Speisser, V.; Boeglin, C.; Houll6, M.; B6gin, D.; et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano. Res. 2010, 3, 126-137.
  • 8Zhou, H. Q.; Zhu, J. X.; Liu, Z.; Yan, Z.; Fan, X. J.; Lin, J.; Wang, G.; Yan, Q. Y.; Yu, T.; Ajayan, P.; et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano. Res. 2014, 7, 1232-1240.
  • 9Jaramillo, T. F.; Jrgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identigication of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science.2007, 317, 100-102.
  • 10Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science.201 l, 331,568-571.

共引文献44

同被引文献19

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部