期刊文献+

基于自适应分块表观模型的视觉目标跟踪 被引量:4

Visual tracking based on adaptive patches appearance model
原文传递
导出
摘要 针对表观发生剧烈变化时的目标跟踪问题,提出一种新的基于自适应分块表观模型的视觉目标跟踪算法.将目标表观描述为一组具有内在空间上几何结构关系约束的局部图像块,在跟踪过程中通过自动添加和删除局部图像块适应目标的表观变化,同时利用全局颜色属性值确定新的图像块的位置,克服了传统分块算法不能及时更新表观模型的局限性.实验结果表明,所提出算法对表观变化具有较高的自适应性,在表观发生剧烈变化时可实现准确的目标跟踪. For the tracking problem when the target undergoes rapid and significant appearance changes, a novel tracking algorithm is presented. The object's appearance is represented by a set of local patches with inherent spatial geometric constraints relationship. It probabilistically adapts to the object's appearance changes by removing and adding the local patches. The locations of new patches are determined by the global color property, which can improve the limitations of the traditional patch-based algorithms that the appearance model can't be updated in time during tracking. Experimental results show that the proposed algorithm performs in many cases with high adaptivity to appearance changes, which has high accuracy to objects with drastically changes.
出处 《控制与决策》 EI CSCD 北大核心 2016年第3期448-452,共5页 Control and Decision
基金 国家自然科学基金项目(61375079)
关键词 视觉跟踪 局部图像块 表观变化 visual tracking local patches appearance changes
  • 相关文献

参考文献18

  • 1P′erez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking[C]. Proc of the 7th European Conf on Computer Vision. Berlin: Springer-Heidelberg, 2002: 661-675.
  • 2Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2411-2418.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 4Fieguth P, Terzopoulos D. Color-based tracking of heads and other mobile objects at video frame rates[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. San Juan: IEEE, 1997: 21-27.
  • 5Collins R T, Liu Y, Leordeanu M. Online selection of discriminative tracking features[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.
  • 6Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. Int J of Computer Vision. 2008, 77(1/2/3): 125-141.
  • 7Han B, Davis L. On-line density-based appearance modeling for object tracking[C]. Proc of IEEE Int Conf on Computer Vision. Beijing: IEEE, 2005: 1492-1499.
  • 8朱明清,王智灵,陈宗海.基于人类视觉智能和粒子滤波的鲁棒目标跟踪算法[J].控制与决策,2012,27(11):1720-1724. 被引量:8
  • 9李维维,张陈斌,陈宗海,王智灵.基于特征学习与特征记忆模板更新机制的粒子滤波跟踪[J].中国科学技术大学学报,2014,44(4):292-302. 被引量:6
  • 10Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 798-805.

二级参考文献95

  • 1Eom K Y, Ahn T K, Kim G J, et al. Fast object tracking in intelligent surveillance system[C]. Computational Science and Its Applications - ICCSA 2009. Pt Ii, 2009: 749-763.
  • 2Shan C F, Tan T N, Wei Y C. Real-time hand tracking using a mean shift embedded particle filter[J]. Pattern Recognition, 2007, 40(7): 1958-1970.
  • 3Siagian C, Itti L. Biologically inspired mobile robot vision localization[J]. IEEE Trans on Robotics, 2009, 25(4): 861- 873.
  • 4Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631- 1643.
  • 5Spengler M, Schiele B. Towards robust multi-cue integration for visual tracking[J]. Machine Vision and Applications, 2003, 14(1): 50-58.
  • 6Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles[J]. Proc of the IEEE, 2004, 92(3): 495-513.
  • 7Shen C, Van den Hengel A, Dick A. Probabilistic multiple cue intergration for particle filter based tracking[C]. Australian Pattern Recognition Society Conf. Sydney, 2003: 399-408.
  • 8Porikli E Tuzel O, Meer E Covariance tracking using model update based on lie algebra[C]. Proc of the 2006 IEEE Computer Society Conf on Computer Vision and Pattern Recognition. New York, 2006: 728-735.
  • 9Alahi A, Marimon D, Bierlaire M, et al. A master-slave approach for object detection and matching with fixed and mobile cameras[C]. The 15th IEEE Int Conf on ICIP. San Diego, 2008: 1712-1715.
  • 10Tuzel O, Porikli F, Meer E Pedestrian detection via classification on Riemannian manifolds[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(10): 1713-1727.

共引文献16

同被引文献8

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部