期刊文献+

基于多传感器的人体行为识别系统 被引量:9

Human behavior recognition system based on multi-sensor
下载PDF
导出
摘要 为了既能提高系统人体行为的识别率,又能降低系统能耗,提出了基于多传感器的人体行为识别系统。通过对滑动时间窗内传感器数据信息进行数学统计,提取数据特征;并通过用weka软件对数据的这些特征进行分析,设计出基于决策树的两层分类识别算法,来对8种常见人体行为进行识别。实验结果表明:该系统在降低了系统能耗同时系统识别率较高,平均识别率达到93.12%,系统便于携带且具有很强的实用性。 The multi-sensor-based human behavior recognition system is proposed to improve recognition rate of system on human behavior, and can reduce system energy consumption. Data features are extracted from sensor data information by mathematical statistics means within sliding time window;by using weka software, analyze data festures,a two-layer classification recognition algorithm based on decision tree is designed to recognize eight common human behaviors. Experimental result demonstrates that this system achieves high recognition rate of 93.12 %, and reduces system energy consumption, and it is portable and has strong practical applicability.
出处 《传感器与微系统》 CSCD 2016年第3期89-91,95,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61171190)
关键词 识别率 系统能耗 数据特征 决策树 recognition rate system energy consumption data features decision tree
  • 相关文献

参考文献6

  • 1田国会,吉艳青,黄彬.基于多特征融合的人体动作识别[J].山东大学学报(工学版),2009,39(5):43-47. 被引量:11
  • 2Toshiyo Tamura,Takumi Yoshimura,Masaki Sekine,et al.A wearable airbag to prevent fall injuries[J].IEEE Transaction on Information Technology in Biomedicine,2009,13(6):910-914.
  • 3Nam Y,Par J W.Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor[J].IEEE Jounals of Biomedicial and Health Informatics,2013,17(2):420-426.
  • 4Dinh A.Data acquisition system using six degree-of-freedom inertia sensor and Zig Bee wireless link for fall detection and prevention[C]∥IEEE 30th Annual International Conference on Engineering in Medicine and Biology Society,2008:2353-2356.
  • 5Inensense MPU-600 and MPU-6050 product specification revision 3.3[EB/OL].[2012-05-16].http:∥www.invensense.com/mems/gyro/sixaxis.html.
  • 6Park Taiwoo,Lee Jinwon,Hwang Inseok,et al.E-gesture:A collaborative architecture for energy-efficient gesture recognition with hand-worn sensor and mobile devices[C]∥Proc of the 9th ACM Conf on Embedded Networked Sensor System,New York:ACM,2011:260-273.

二级参考文献8

  • 1田国会.家庭服务机器人研究前景广阔[J].国际学术动态,2007(1):28-29. 被引量:21
  • 2BOBICK, DAVIS J. Real-time recognition of activity using temporal templates[ C]// Proceedings of the IEEE Conference on Applications of Computer Vision. Sarasota, Florida, 1996: 39-42.
  • 3MUN Wailee. Model-Based approach for estimating human 3D poses in static images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(6): 905-916.
  • 4MA G, LIN X. Typical sequences extraction and recognition [J ]. Lecture Notes in Computer Vision (LNCS), 2004, 3058 : 60-71.
  • 5KOJIMA A. Generating natural language description of human behaviors from video images [ C]//IEEE International Conference on Patern Recognition. Barcelona: IEEE Press, 2000: 728-731.
  • 6ISMAIL HARITAOGLU, DAVID HARWOOD, LARRY SDAVIS. W4: real-time surveillance of people and their activities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) :809-830.
  • 7田国会,李晓磊,赵守鹏,路飞.家庭服务机器人智能空间技术研究与进展[J].山东大学学报(工学版),2007,37(5):53-59. 被引量:37
  • 8凌志刚,赵春晖,梁彦,潘泉,王燕.基于视觉的人行为理解综述[J].计算机应用研究,2008,25(9):2570-2578. 被引量:22

共引文献10

同被引文献57

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部