期刊文献+

基于核稀疏表示的图像去噪算法 被引量:6

Image Denoising Algorithm Based on Kernel Sparse Representation
下载PDF
导出
摘要 传统去噪算法去除噪声后仍有噪声残留,且噪声较大时的图像去噪效果不明显。针对该问题,提出一种新的图像去噪算法。将输入的噪声图像分成相互重叠的图像块,随机抽取适量的图像块学习得到自适应的冗余字典,给出核正则化正交匹配追踪技术,利用该技术得到稀疏表示系数,并使用稀疏表示系数恢复原图像。实验结果表明,与K-奇异值分解算法相比,该算法的峰值信噪比较高,且能较好地保持图像的细节和纹理信息。 The traditional denoising algorithm has residual noise after removing noise,and image denoising effect is not obvious for the large noise. Aiming at this problem,a newimage denoising algorithm is proposed in this paper. In this algorithm,the input image with noise can be split into overlapped image patches. Through randomly selecting moderate image block to learn,an adaptive redundant dictionary can be got. Then the sparse representation coefficients can be obtained from this redundant dictionary with nuclear regularized orthogonal matching pursuit technology. Then the image can be restored by these coefficients. Experimental results showthat compared with K-Singular Value Decomposition( KSVD) algorithm,the Peak Signal to Noise( PSNR) of the proposed algorithm is better,the image detail and texture information can be well preserved.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第3期272-277,共6页 Computer Engineering
基金 河口海岸学国家重点实验室开放课题基金资助项目(SKLEC201207)
关键词 字典学习 冗余字典 核稀疏表示 图像去噪 正交匹配追踪 dictionary learning redundant dictionary kernel sparse representation image denoising Orthogonal Matching Pursuit(OMP)
  • 相关文献

参考文献18

  • 1Buads A,Coll B,Morel J M. A Non-local Algorithm for Image Denoising [ C ]//Proceedings of IEEE CVPR' 05. Washington D. C. , USA : IEEE Press ,2005:60-65.
  • 2MairalI, Bach F, Ponce J, et al. Non-local Sparse Models for Image Restoration [ C ~//Proceedings of IEEE ICCV' 09. Washington D. C., USA: IEEE Computer Society, 2009 : 2272-2279.
  • 3Dabov K,Foi A,Egiazarian K. Image Denoising by Sparse 3D Transform-domain Collaborative Filtering~Jl. IEEE Transactions on Image Processing,2007,16(8):2080-2095.
  • 4Burger H C ,Schuler C I, Harmeling S. Image Denoising: Can Plain Neural Networks Compete with BM3D [ C J// Proceedings of IEEE CVPR' 12. Washington D. C. , USA: IEEE Computer Society,2012:2392-2399.
  • 5Dong Weisheng, Zhang Lei, Li Xin, et al. Nonlocally Centralized Sparse Representation for Image Restora- tionl J J. IEEE Transactions on Image Processing,2013, 22(4) : 1620-1630.
  • 6Romano Y,Protter M,Elad M. Single Image Interpolation via Adaptive Nonlocal Sparsity-based Modeling [ J 1. IEEE Transactions on Image Processing,2014,23(7):3085-3098.
  • 7Romano Y,Elad M. Improving K-SVD Denoise by Post- processing Its Method-noise ~ C ~//Proceedings of IEEE ICIP' 13. Washington D. C., USA: IEEE ComputerRomano Y,Elad M. Improving K-SVD Denoise by Post- processing Its Method-noise ~ C ~//Proceedings of IEEE ICIP' 13. Washington D. C., USA: IEEE ComputerSociety,2013:435-439.
  • 8李民,程建,李小文,乐翔.非局部学习字典的图像修复[J].电子与信息学报,2011,33(11):2672-2678. 被引量:18
  • 9刘晓明,田雨,何徽,仲元红.一种改进的非局部均值图像去噪算法[J].计算机工程,2012,38(4):199-201. 被引量:32
  • 10郑兴明,刘宁钟.基于字典学习正则化的图像去噪[J].计算机工程,2013,39(7):270-273. 被引量:1

二级参考文献39

  • 1吴显金,王润生.基于边缘恢复和伪像消除的正则化图像复原[J].电子与信息学报,2006,28(4):577-581. 被引量:10
  • 2杨晓慧,焦李成,李伟.基于第二代bandelets的图像去噪[J].电子学报,2006,34(11):2063-2067. 被引量:14
  • 3Bertalmio M, Sapiro G, Caselles V, et al.. Image inpainting[C]. Proceedings of SIGGRAPH 2000, New Orleans, USA, 2000: 417-424.
  • 4Chan T F and Shen J. Mathematical models for local nontexture inpaintings[J]. SIAM Journal on Applied Mathematics, 2002, 62(3): 1019-1043.
  • 5Chan T F and Shen J. Non-texture inpainting by CurvatureDriven Diffusions (CDD)[J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449.
  • 6Tsai A, Yezzi A, and Willsky A S. Curve evolution implementation of the Mumford Shah functional for image segmentation, denoising, interpolation, and magnification[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1169-1186.
  • 7Esedoglu S and Shen J. Digital inpainting based on the Mumford-Shah-Euler image model[J]. European Journal of Applied Mathematics, 2002, 13(4): 353-370.
  • 8Zhang X T and Chan F. Wavelet inpainting by nonlocal total variation[R]. Technical Report, Los Angeles: University of California, 2009.
  • 9Criminisi A, Perez P, and Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
  • 10Tang F, Ying Y, Wang J, et al.. A novel texture synthesisbased algorithm for object removal in photographs[C]. The 9th Asian Computing Science Conference, Chiang Mai, Thailand, 2004: 248-254.

共引文献47

同被引文献42

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部