期刊文献+

系统聚类分析探讨老年人呼吸道疾病的临床表型 被引量:14

Investigation of distinct clinical phenotypes of airways disease in the elderly based on hierarchical cluster analysis
原文传递
导出
摘要 目的采用系统聚类分析对老年呼吸道疾病患者的临床特征进行识别及分组,形成表型。方法前瞻性纳入67例有喘息症状的老年患者,收集人口统计学资料、呼吸道症状、吸烟年数、急性加重情况、特应性症状、呼气峰流速日志等。患者于病情稳定期进行肺功能检查,并检测血清总IgE水平、外周血嗜酸性粒细胞计数,对患者进行系统聚类分析。结果经系统聚类分析可将患者分为4类:(1)不吸烟、肺功能正常、血清总IgE升高、具有机体特应性的哮喘患者;(2)不吸烟、肺功能正常、仅有喘息症状的患者;(3)吸烟、重度气流受限、生活质量差的慢性阻塞性肺疾病(慢阻肺)患者;(4)吸烟、有气流受限、血清总IgE明显升高的哮喘一慢阻肺重叠综合征患者。4种表型患者在用药前第1秒用力呼气容积(FEV1)/用力肺活量(FVC)、FEV1/预计值、FEV1改善率和最大呼气中段流速(MMEF)/预计值、一氧化碳弥散系数(DLCO)/残气量(VA)/预计值、残气量(RV)/预计值、血清总IgE水平、累计吸烟量、圣乔治呼吸系统问卷(SGRQ)评分差异有统计学意义(P〈0.05或P〈0.01)。结论聚类分析可识别老年呼吸道疾病患者不同的临床表型,与单纯哮喘或慢阻肺患者相比,哮喘慢阻肺重叠综合征患者肺功能下降明显,急性加重次数多,生活质量最差,需要引起重视。 Objective To explore the clinical phenotype of airways disease in elderly patients using hierarchical cluster analysis. Methods A total of 67 elderly patients with respiratory symptoms were enrolled in a prospective study. Demographic and clinical data, such as respiratory symptoms, cumulative tobacco cigarette consumption, acute exacerbation, atopic symptoms and peak flow diary were collected. Pulmonary function tests, blood tests (total serum IgE level and blood eosinophil level) were performed in each patient during the stable stage. Then patients with different clinical phenotype were identified by hierarchical cluster analysis. Results Four clusters were identified with the following characteristics by hierarchical cluster analysis: cluster 1, atopic patients with no smoking, normal lung funetion, but increased total serum IgE levels and asthma symptom; cluster 2, patients with no smoking and normal pulmonary function with wheezing but without chronic cough; cluster 3, patients with chronic obstructive pulmonary disease and smoking, severe airflow limitation and poor quality of life; cluster 4, patients with asthma-chronic obstructive pulmonary disease overlap syndrome and smoking, airflow limitation and increased total serum IgE levels. The forced expiratory volume in 1 second (FEV1)/ forced vital capacity (FVC) ratio, FEV1/predicted value, rate of FEV1 change, maximal mid-expiratory flow (MMEF)/ predicted value, the diffusion lung capaeity for carbon monoxide (DLCO)/ alveolar volume (VA)/predicted value, residual volume (RV)/ predicted value, total serum Ig E levels, cumulative tobacco cigarette consumption, the St. George's Respiratory Questionnaire (SGRQ) score had significant differences in patients before versus after treatment (all P〈0. 05 or P〈0.01). Conclusions Based on hierarchical cluster analysis, distinct clinical phenotypes of airways disease in elderly patients can be identified. Conclusions With patients having asthma or COPD alone, patients with Asthma-COPD overlap syndrome (ACOS) always experience a more rapid decline in lung function and frequent exacerbations, having poor health related qualit^of-life (HRQOL) outcomes, which deserve our high attention.
出处 《中华老年医学杂志》 CAS CSCD 北大核心 2016年第3期256-259,共4页 Chinese Journal of Geriatrics
关键词 呼吸道疾病 表型 聚类分析 Respiratory trac diseases Phenotype Cluster analysis
  • 相关文献

参考文献14

  • 1Weatherall M, Travers J, Shirtc|iffe PM, eta[. Distinct clinical phenotypes of airways disease defined by cluster analysis[J]. Eur Respir J, 2009, 34 (4) : 818-888. DOI: 10. 1183/09031936. 00174408.
  • 2Garcia Aymerich J, Agusti A, Barbera JA, et al. Phenotypic heterogeneity of chronic obstructive pulmonary disease[J]. Arch Bronconeumol, 2009, 45 (3): 129-138. DOI: 10. 1016/$1579-2129 (09) 70790-6.
  • 3Kaneko Y, Masuko H, Sakamoto T, et al. Asthma phenotypes in japanese adults their associations with the CCL5 and ADRB2 Genotypes[J]. Allergol Int. 2013, 62 ( 1 ).. 113-121. DOI.. 10.2332/ allergolint. 12-OA-0467.
  • 4GagnonP, Casaburi R, Saey D, et al. Cluster analysis in patients with GOLD 1 chronic obstructive pulmonary disease[J]. PLoS One, 2015, 23 (4).. e0123626. DOI: 10. 1371/journal. pone. 0123626.
  • 5Cho MH, Washko GR, Hoffmann TJ, et al. Cluster analysis in severe emphysema subjects using phenotype and genotype data., an exploratory investigation[J]. Respir Res, 2010, 11(5) :30. DOI: 10. 1186/1465-9921-11-30.
  • 6Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes [J]. Am J Respir Crit Care Med, 2008, 178(3) : 218-224. DOI.. 10. l164/rccm. 200711-17540(2.
  • 7VavougiosGD, Natsios G, Pastaka C, et ah Phenotypes of comorbidity in OSAS patients: combining categorical principal component analysis with cluster analysis[J]. J Sleep Res, 2015, 25(1) : 31-38. DOI: 10. ll]l/jsr. 12344.
  • 8Schatz M, Hsu JW, Zeiger RS, et al. Phenotypes determined by cluster analysis in severe or difficult- to-treat asthma. J Allergy Clin Immunol, 2014, 133 (6) : 1549-1556. II: 10. 1016/j. jaci. 2013.10. 006.
  • 9Sakagami T, Hasegawa T, Koya T, et ah Cluster analysis identifies characteristic phenotypes of asthma with accelerated lung function decline[J]. J Asthma, 2014, 51 ( 2 ): 113-118. DOI.. 10. 3109/ 02770903. 2013. 852201.
  • 10Romero KM, Robinson CL, Baumann LM, et al. Role of exhaled nitric oxide as a predictor of atopy [J]. Respir Res, 2013,14(5): 48. DOI: 10.1186/ 1465-9921-14-48.

同被引文献104

引证文献14

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部