期刊文献+

辅助驾驶中的红绿灯识别及其FPGA实现 被引量:6

Traffic light recognition in auxiliary driving and its implementation by FPGA
下载PDF
导出
摘要 为了降低路况的复杂性和交通信号灯的多变性给司机带来的影响,模拟一种辅助驾驶情景,提出基于FPGA的颜色识别系统的设计,作为辅助驾驶系统中的交通灯识别模块。在识别系统中,使用颜色特征HSV作为特征提取算法。为了增强对交通灯识别的准确率,先对图像进行腐蚀操作,去掉小的噪点;然后再对图像进行膨胀操作,恢复对非噪声区域削去的部分边缘。实验结果表明,基于FPGA的识别模块可快速准确地识别红、黄、绿3种颜色,识别率达到97%。 To reduce the effect of the complexity of road situation and polytropism of traffic lights on drivers,the design scheme of a color recognition system based on FPGA is proposed by simulating an auxiliary driving scene,which is taken as traffic light recognition module in driver assistance system. In recognition system,color feature-HSV is used as feature extraction algorithm. In order to enhance the traffic light recognition accuracy,the image etching is carried out first to remove the small noise,and then the image expansion operation is conducted to restore some edge of non-noise area,which is chipped off before.The experiment results show that FPGA-based identification module can quickly and accurately identify the three colors of red,yellow and green. Its recognition rate can reach up to 97%.
出处 《现代电子技术》 北大核心 2016年第6期73-76,共4页 Modern Electronics Technique
基金 陕西省自然基金面上项目(2012JM8044) 陕西省教育厅项目(12JK0733) 西安邮电大学创新基金项目(114-602080034) 3S杯全国大学生物联网技术与应用项目(B149)
关键词 FPGA HSV 图像的腐蚀 颜色识别系统 FPGA HSV image corrosion colour recognition system
  • 相关文献

参考文献5

  • 1Tae-Hyun H,In-Hak J5 Seong-Ik C.Detection of traffic lights for vision-based car navigation system[M],Advances in Image and Video Technology.Springer Berlin Heidelberg,2006:682-691.
  • 2YELAL M R,SASI S,SHAFFER G R.Color-based signal light tracking in real-time video[C]//IEEE International Conference on Video and Signal Based Surveillance.Sydney,Australia:IEEE,2006:103-107.
  • 3REEKY M,LEBERL F.Windows detection using k-means in cie-lab color space[C]//IEEE2010 20th International Conference on Pattern Recognition(ICPR).Istanbul,Turkey:IEEE,2010:356-359.
  • 4GARCIA-ESCUDERO L A,GORDALIZA A,MATRON C,et al.A review of robust clustering methods[J].Advances in data analysis and classification,2010,4(2/3):89-109.
  • 5刘颖,黄源,高梓铭.刑侦图像检索中的特征提取及相似性度量[J].西安邮电大学学报,2014,19(6):11-16. 被引量:21

二级参考文献10

  • 1Sarathy Y P,Mote V R,Lonikar A A.Pattern Recognition and Image Processing in Forensic Science[J].Soft Computing,2005,9(1):207-213.
  • 2Gonzalez R C,Woods R E,Eddins S L.Digital image processing using MATLAB[M].India:Pearson Education India,2004:489-492.
  • 3Datta R,Joshi D,Li Jia,et al.Image retrieval:Ideas,influences,and trends of the new age[J].ACM Computing Surveys(CSUR),2008,40(2):1-60.
  • 4Liu Ying,Zhang Dengshen,Lu Guojun,et al.A survey of content-based image retrieval with high-level semantics[J].Pattern Recognition,2007,40(1):262-282.
  • 5Chen Yixin,Roussev V,Richard G,et al.Contentbased image retrieval for digital forensics[M].America:Springer,2005:271-282.
  • 6Jain A K,Klare B,Park U.Face matching and retrieval in forensics applications[J].IEEE Multimedia,2012,19(1):20.
  • 7Ma Zongfang,Chen Yongmei,Pan Quan.Research on color-based image retrieval and implement of the system[C]//International conference on computer and electrical engineering.Thailand:IEEE,2008:116-118.
  • 8Cha S H.Comprehensive survey on distance/similarity measures between probability density functions[J].International journal of mathematical models and methods in applied sciences,2007,1(2):299-306.
  • 9Hiremath P S,Shivashankar S.Wavelet based features for texture classification[J].ICGST International Journal on Graphics,Vision and Image Processing(GVIP)ICGST,2006,6(3):55-58.
  • 10Hiremath P S,Shivashankar S,Pujari J.Wavelet based features for color texture classification with application to CBIR[J].International Journal of Computer Science and Network Security,2006,6(9A):124-133.

共引文献20

同被引文献31

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部