期刊文献+

基于词对齐模型的中文评价对象与评价词抽取 被引量:4

Extraction of opinion targets and opinion words from Chinese sentences based on word alignment model
原文传递
导出
摘要 提出一种基于统计机器翻译的思想抽取评价对象与评价词的方法。该方法利用词对齐模型抽取评价对象与评价词之间的关系,并结合词共现信息等特征来估计两者关系的强度。建立一张二分图刻画评价关系,并加入领域相关性度量,利用随机游走算法迭代计算候选评价对象与评价词的置信度。在COAE2011任务3的语料上进行试验验证。结果表明,利用词对齐模型抽取评价对象与评价词可以有效提高准确度,抽取出更多的评价对象与评价词。 This paper proposed an approach to extract opinion targets and opinion words based on the idea of statistical machine translation. This method extracted the associations between opinion targets and opinion words by using word alignment model,whose strength was estimated with word co-occurrence. To model these associations,the approach constructed a bipartite graph. Then a domain relevance measure was used,and random-walk algorithm was applied to calculate the confidence of each opinion target candidates and opinion word candidates. The method was evaluated on the labeled corpus of task 3 in COAE2011. The experiment results showed that it could effectively improve the accuracy by employing the model of word-alignment to extract opinion targets and opinion words,and the method could extract more targets and words simultaneously.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第1期58-64,70,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金青年项目(61300105) 教育部博士点基金联合资助项目(2012351410010) 福建省科技重大专项项目(2013H6012) 福州市科技计划项目(2012-G-113 2013-PT-45)
关键词 评价对象抽取 评价词抽取 词对齐模型 中文句子 opinion targets extraction opinion word extraction word-alignment model Chinese sentence
  • 相关文献

参考文献3

二级参考文献38

  • 1POPESCU AM, ETZIONI O. Extracting product features and opinions from reviews [ C ]//Proc of Conference on Human Language Technolo- gy and Empirical Methods in Natural Language. Stroudsburg, PA: Association for Computational Linguistics,2005 : 339 - 346.
  • 2LIU Bing, HU Min-qing, CHENG Jun-sheng. Opinion observer: ana- lyzing and comparing opinions on the Web[ C]//Proc of the 14th In- ternational Conference on World Wide Web. Now York: ACM Press, 2005 : 342-351.
  • 3同义词词林(扩展版)[M].哈尔滨:哈尔滨工业大学信息检索研究中心.
  • 4PIETRA S D, PIETRA V D, MERCER R L, et al. Adaptive lan- guage modeling using minimum discriminant estimation [ C ]//Proc of Speeeh and Natural Language DARPA Workshop. Stroudsburg, PA: Association for Computational Linguistics, 1992 : 103-106.
  • 5DARROCH J N, RATELIFF D. Generalized iterative sealing for log- linear models [ J ]. Annals of Mathematical Statistie, 1972,43 (5) :1470-1480.
  • 6AL Berger, VJ Della Pietra, SA Della Pietra. A Maximum Entropy Approach to Natural Language Processing [J]. Computational Linguistics, 1996.
  • 7A Kennedy, D Inkpen. Sentiment Classification of Movie and Product Reviews Using Contextual Valence Shifters [A].Proceedings of FINEXIN-05, Workshop on the Analysis of Informal and Formal Information Exchange during Negotiations [C].
  • 8AM Popescu, O Etzioni. Extracting Product Features and Opinions from Reviews [ A]. Proceedings of EMNLP 2005 [C]. 2005.
  • 9Aron Culotta, Jeffrey Sorensen. Dependency Tree Kernels for Relation Extraction[A]. Proceedings of the 42nd Annual Meeting of the Association[C].
  • 10B Liu, M Hu, J Cheng. Opinion Observer: Analyzing and Comparing Opinions on the Web [A]. Proceedings of the 14th international conference on World Wide Web [C].

共引文献41

同被引文献26

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部