期刊文献+

Contourlet变换域的稀疏表示分类方法 被引量:2

Sparse Representation for Classification Based on Contourlet Transform
下载PDF
导出
摘要 提出一种基于Contourlet变换域的稀疏表示分类方法对人脸进行识别,使用Contourlet波变换对初始图像进行处理,得到原始图像的低频和高频特征,将低频分量与高频分量直接组合为一维向量,输入稀疏表示分类算法进行识别.研究结果表明,该方法能够对图像进行快速特征提取,去除噪声和冗余,保留边缘等局部特征,同时降低了图像维数.与PCA+SRC、LPP+SRC方法相比,该方法能够得到更好的判别特征和更高的识别率. A kind method based on sparse representation and the Contourlet transform for face recognition is proposed.The original images are filtered by the Contourlet transform,the low and high frequency characteristics are obtained.Then combining these two kinds of characteristics into one dimensional vector,the vector is put into the sparse coding algorithm for the face recognition.The results shows that the proposed method can process the image feature extraction rapidly,remove noise and redundancy,retain local image features,and reduce the data dimensionality.The proposed method can obtain better features and better face recognition performance by comparison with PAC+SRC method and LPP+SRC method.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第1期89-93,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(61201370) 山东省自然科学基金资助项目(ZR2014FM039)
关键词 稀疏表示分类方法 CONTOURLET变换 低频子带 高频子带 人脸识别 sparse representation for classification contourlet transform low frequency characteris tics high frequency characteristics face recognition
  • 相关文献

参考文献13

  • 1杨荣根,任明武,杨静宇.基于稀疏表示的人脸识别方法[J].计算机科学,2010,37(9):267-269. 被引量:50
  • 2舒双宝,罗家融,徐从东,孙滨璇.一种基于支持向量机的人脸识别新方法[J].计算机仿真,2011,28(2):280-283. 被引量:27
  • 3Zhang A,Guan C,Jiang H,et al.An Image Super-Resolution Scheme Based on Compressive Sensing with PCA Sparse Representation[J].Lecture Notes in Computer Science,2013(1):495-506.
  • 4Yu W,Teng X,Liu C.Discriminant Locality Preserving Projections:A New Method To Face Representation And Recognition[C]//Proceedings of 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.IEEE press,2005:201-207.
  • 5岳许要,杨恢先,祝贵,冷爱莲,李利.非采样Contourlet变换与局部二值模式相结合的人脸识别[J].计算机应用,2012,32(7):1890-1893. 被引量:5
  • 6Zhao Z,Hao X.Contourlet-based Manifold Learning for Face Recognition[C]//Proceedings of 2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering(URKE).IEEE press,2012:196-199.
  • 7Cheng Y,Hou Y,Zhao C,et al.Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain[J].Neurocomputing,2010,73(1012):2217-2224.
  • 8Yang M,Zhang L,Yang J,et al.Metaface learning for sparse representation based face recognition[J].Proceedings,2010,119(5):1601-1604.
  • 9Lai J,Jiang X.Modular Weighted Global Sparse Representation for Robust Face Recognition[J].IEEE Signal Processing Letters,2012,19(9):571-574.
  • 10Deng Y,Li W,Guo Z,et al.Face Recognition Based on Non-Subsampled Contourlet Transform and Multi-order Fusion Binary Patterns[M]//Intelligence Science and Big Data Engineering.Springer Berlin Heidelberg,2013:521-528.

二级参考文献30

共引文献79

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部