期刊文献+

基于离群点检测的学生学习状态分析方法 被引量:10

Learning State Analysis Method of Students Based on Outlier Detection
下载PDF
导出
摘要 针对高校学生工作者任务繁多且直接管理的学生人数众多,难于对每个学生进行个性化的学习指导的实际问题,提出基于离群点检测的学生学习状态分析方法,将有限的教育资源分配给最迫切需求的学生。使用基于密度的局部离群点检测算法对学生考试成绩数据进行挖掘,找出可疑离群学生,然后对可疑离群学生进行学习状态分析。案例研究结果表明,本方法能够有效地找出学习状态异常的学生,可以提升高校学生工作者的管理效率。 The student supervisors are facing a great challenge in Chinese universities that they have a lot of work to do and serve too many students directly,so that they can hardly give a personalized learning guide for every student. We propose a method of learning state analysis of students based on outlier detection to solve this problem and allocate the limited educational resources to the neediest students. This method finds the suspicious outlying students through mining the students' scores based on the algorithm of density-based local outliers,and analyzes the learning state of these students. The case study shows that this method can efficiently find some students with exceptional learning state which may assist the college student supervisors in managing students more efficiently.
出处 《计算机与现代化》 2016年第3期35-40,共6页 Computer and Modernization
基金 华中科技大学教学研究基金资助项目(0122184032)
关键词 离群点检测 教育数据挖掘 学生成绩 学习状态 局部离群点因子 数据挖掘 outlier detection educational data mining student's scores learning state local outlier factor data mining
  • 相关文献

参考文献17

二级参考文献33

共引文献701

同被引文献67

引证文献10

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部