期刊文献+

变概率混合细菌觅食优化算法 被引量:6

Variable probability and hybrid bacterial foraging optimization algorithm
下载PDF
导出
摘要 针对细菌觅食优化算法寻优过程中精度差、易陷入早熟收敛等缺点,提出一种变概率混合细菌觅食优化算法。借鉴粒子群算法的信息共享机制,采用能综合反映细菌自身学习及群体合作的趋化方向,以提高算法的寻优精度和效率;基于群体适应度方差理论引入变概率迁徙策略,帮助细菌快速跳出局部极值,避免了早熟收敛和精英细菌逃逸;采用改进型佳点集方法构造初始种群及迁徙后的新个体,保证了种群多样性和解空间随机性。实验结果表明,本文提出的算法在全局收敛能力及优化精度和速度方面均表现更优。 For the drawbacks such as low optimization precision and sticking to local optimum with the classic bacteria foraging optimization(BFO),a variable probability and hybrid BFO(VHBFO)algorithm is presented.Emerged from the information sharing mechanism of particle swarm optimization(PSO),the chemotaxis direction strategy reflecting the bacteria individual cognitive and group cooperation is proposed,so as to improve the precision and searching efficiency of the algorithm.The variable probability of migration operations based on the group fitness variance theory is introduced to avoid the premature convergence and help bacteria quickly jump out of local extremum and avoid elite bacteria escape.The improved good point set population is used to construct the initial population and new individuals after migration,which provides a more uniform and diversified solution space.Experiment results indicate that the algorithm outperforms the classic algorithm both in terms of the solution accuracy and the convergence speed.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第4期960-964,共5页 Systems Engineering and Electronics
基金 国防"十二五"基础科研项目(A1120132007)资助课题
关键词 细菌觅食优化算法 信息共享 群体适应度方差 变概率 改进型佳点集 bacteria foraging optimization(BFO)algorithm information sharing group fitness variance variable probability improved good point set
  • 相关文献

参考文献18

  • 1Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. Control System Magazine, 2002, 22(3) :52 - 67.
  • 2Singh S, Ghose T, Goswami S K. Optimal feeder routing based on the bacterial foraging technique[J]. IEEE Trans. on Power Delivery, 2012,27(1) :70- 78.
  • 3Mohamad A B, Mousa S. Segmentation of color lip images by opti- mal thresholding using bacterial foraging optimization (BFO)[J]. Journal of Computational Science, 2014,5 (2) : 251 - 257.
  • 4Agrawal S, Panda R, Dora L. A study on fuzzy clustering for magnetic resonance brain image segmentation using soft compu- ting approaches[J~. Applied So f t Computing, 2014,24:522-533.
  • 5Patnaik S S, Panda A K. Optimizing current harmonics compen- sation in three-phase power systems with an enhanced bacterial foraging approach [J]. International Journal of Electrical Power and Energy Systems, 2014, 61:386 - 398.
  • 6Biswas A, I)asgupta S, Das S, et al. Synergy of PSO and bacte- rial foraging optimization: a comparative study on numerical benchmarks[C]//Proc, of the 2nd International Symposium on Hybrid Artificial Intelligent Systems, 2007 : 255 - 263.
  • 7Biswas A, Dasgupta S, Das S, et al. A synergy of differential e volution and bacterial foraging optimization for global optimiza- tion[J]. Neural Network Word, 2007, 17 (6) : 607 - 626.
  • 8Xu X, Chen H L. Adaptive computational chemotaxis based on field in bacterial foraging optimization[J]. Soft Computing, 2014,18 (4) :797 - 807.
  • 9姜建国,周佳薇,郑迎春,周润生.一种双菌群细菌觅食优化算法[J].深圳大学学报(理工版),2014,31(1):43-51. 被引量:12
  • 10Chu Y, Mi H, Liao H. A fast bacterial swarming algorithm forhigh dimensional gunction optimization[C]//Proc, of the IEEE World Congress on Computational Intelligence Evolutionary Computation, 2008:3135 - 3140.

二级参考文献46

共引文献201

同被引文献77

引证文献6

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部